Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 10(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38534588

ABSTRACT

Drought and water shortage are serious problems in many arid and semi-arid regions. This problem is getting worse and even continues in temperate climatic regions due to climate change. To address this problem, the use of biodegradable hydrogels is increasingly important for the application as water-retaining additives in soil. Furthermore, efficient (micro-)nutrient supply can be provided by the use of tailored hydrogels. Biodegradable polyaspartic acid (PASP) hydrogels with different available (1,6-hexamethylene diamine (HMD) and L-lysine (LYS)) and newly developed crosslinkers based on diesters of glycine (GLY) and (di-)ethylene glycol (DEG and EG, respectively) were synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) and regarding their swelling properties (kinetic, absorbency under load (AUL)) as well as biodegradability of PASP hydrogel. Copper (II) and zinc (II), respectively, were loaded as micronutrients in two different approaches: in situ with crosslinking and subsequent loading of prepared hydrogels. The results showed successful syntheses of di-glycine-ester-based crosslinkers. Hydrogels with good water-absorbing properties were formed. Moreover, the developed crosslinking agents in combination with the specific reaction conditions resulted in higher water absorbency with increased crosslinker content used in synthesis (10% vs. 20%). The prepared hydrogels are candidates for water-storing soil additives due to the biodegradability of PASP, which is shown in an exemple. The incorporation of Cu(II) and Zn(II) ions can provide these micronutrients for plant growth.

3.
Chemistry ; 12(15): 4121-43, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16528788

ABSTRACT

Lipid-modified proteins play decisive roles in important biological processes such as signal transduction, organisation of the cytoskeleton and vesicular transport. Lipidation of these proteins is essential for correct biological function. Among the modifications with lipids, prenylation and myristoylation are well understood. However, the machinery of palmitoylation is still under investigation. Recently, an enzyme, acyl protein thioesterase 1 (APT1), that may play a regulatory role in the palmitoylation cycle of H-Ras and G-protein alpha subunits, was purified. Motivated by this work, several inhibitors of APT1 were designed, synthesized and biologically evaluated leading to highly active compounds.


Subject(s)
Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Thiolester Hydrolases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Humans , Oligopeptides/chemical synthesis , Oligopeptides/metabolism
5.
Angew Chem Int Ed Engl ; 44(21): 3186-216, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15898057

ABSTRACT

The treatment of cancer through the development of new therapies is one of the most important challenges of our time. The decoding of the human genome has yielded important insights into the molecular basis of physical disorders, and in most cases a connection between failures in specific genes and the resulting clinical symptoms can be made. The modulation of epigenetic mechanisms enables, by definition, the alteration of cellular phenotype without altering the genotype. The information content of a single gene can be crucial or harmful, but the prerequisite for a cellular effect is active gene transcription. To this end, epigenetic mechanisms play a very important role, and the transcription of a given gene is directly influenced by the modification pattern of the surrounding histone proteins as well as the methylation pattern of the DNA. These processes are effected by different enzymes which can be directly influenced through the development of specific modulators. Of course, all genetic information is written as a four-character code in DNA. However, epigenetics describes the art of reading between the lines.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Histone Acetyltransferases/metabolism , Histones/physiology , Acetylation , Animals , DNA Methylation , Histone Acetyltransferases/chemistry , Histones/chemistry , Humans , Methylation , Phosphorylation , Poly Adenosine Diphosphate Ribose/metabolism , Yeasts/enzymology , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...