Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35629478

ABSTRACT

This article analyzes the possibility of the modification of BC powder (a mixture of sodium bicarbonate and calcium carbonate) with magnesium hydroxide (Mg(OH)2). Extinguishing efficiency as well as the influence of this additive on other physicochemical properties were determined by performing a 13B fire test, rheological measurements of the powders, thermal tests (thermogravimetry (TG) and differential scanning calorimetry (DSC) in combination with quadrupole mass spectrometry (QMS)) and microscopic observations of the powders' surface (scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDS)). It was found that the increase of the Mg(OH)2 content causes deterioration of the rheological properties by increasing the slope angle of the flow curve in relation to the normal stress (the tangent of the flow curve slope varying from 0.258 for 5% of Mg(OH)2 up to 0.330 for 20% of Mg(OH)2). However, at the same time, the increased content of Mg(OH)2 increases the total energy of the chemical decomposition reaction (from -47.27 J/g for 5% of Mg(OH)2 up to -213.6 J/g for 20% of Mg(OH)2) resulting in the desirable higher level of heat removal from the fire. The initial extinguishing effect of the fire becomes more effective as the hydroxide content increases (within the first 2 s), but at a later stage (from t = 63 s), the temperature is no longer sufficient (it is below 350 °C) for thermal decomposition of Mg(OH)2. As such, the optimal content of Mg(OH)2 is 10-15%. The obtained results allowed for the assessment of the impact of individual powder components on its extinguishing effect and will contribute to the development of science in the field of developing new types of extinguishing powders.

2.
Materials (Basel) ; 14(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208546

ABSTRACT

Increasingly, firefighting aerosols are being used to extinguish fires. It is assumed that the extinguishing mechanism involves breaking the chain of physicochemical reactions occurring during combustion by binding free radicals at ignition. The radicals are most likely formed from the transformation of water molecules, with the active surfaces of aerosol micro- or even nanoparticles. The aerosol extinguishing method is very effective even though it does not reduce oxygen levels in the air. In contrast to typical extinguishing powders, the aerosol leaves a trace amount of pollutants and, above all, does not adversely affect the environment by depleting the ozone layer and increasing greenhouse effects. Depending on how the firefighting generators are released, the aerosol can act locally or volumetrically, but depending on environmental conditions, its effectiveness can be variable. The article presents the influence of environmental humidity on the atomization of aerosol nanosize, which confirms the radical combustion mechanism. This paper presents the effect of environmental humidity on the atomization of aerosol superfine (nano) particles. The main focus was on the grain distribution and its effect on the surface activity of the FP-40C type firefighting aerosol. Changes in the characteristic parameters of the particle size distribution of RRSB (Rosin-Rammler-Sperling-Bennet) are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...