Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 197(3): 757-770, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34622333

ABSTRACT

Forecasting the effects of climate change on the distribution of invasive species can be difficult, because invaders often thrive under novel physical conditions and biotic interactions that differ from those in their native range. In this study, we experimentally examined how rising temperatures and sand burial could alter the abundance and biotic interactions of two invasive beachgrasses, Ammophila arenaria and A. breviligulata, along the U.S. Pacific Northwest coast. We asked whether the current geographic ranges of the two congeners, and thus their effects on dune morphology and coastal ecosystem services, might shift as a consequence of climate driven changes in warming and sand supply. Our results show that A. breviligulata had lower biomass and tiller production when exposed to warming and high rates of sand burial, while A. arenaria showed neutral or positive responses to those treatments. Nevertheless, under all experimental combinations, A. breviligulata had strong negative effects on A. arenaria, while A. arenaria had weaker effects on A. breviligulata. Our models predict that although A. breviligulata mostly excludes A. arenaria, elevated temperatures and high rates of sand burial also increase the likelihood of species coexistence. We suggest that under climate change, the differences in physiological tolerance and the mediation of species interactions could expand the northern distributional limit of A. arenaria but restrict the southern limit of A. breviligulata. Moreover, because beachgrass abundance has direct effects on biophysical functions of dunes, reductions in vigor from warming could alter coastal protection, biodiversity, and carbon sequestration.


Subject(s)
Ecosystem , Poaceae , Biodiversity , Climate Change , Introduced Species
2.
PeerJ ; 6: e4932, 2018.
Article in English | MEDLINE | ID: mdl-29900075

ABSTRACT

Previous work on the US Atlantic coast has generally shown that coastal foredunes are dominated by two dune grass species, Ammophila breviligulata (American beachgrass) and Uniola paniculata (sea oats). From Virginia northward, A. breviligulata dominates, while U. paniculata is the dominant grass south of Virginia. Previous work suggests that these grasses influence the shape of coastal foredunes in species-specific ways, and that they respond differently to environmental stressors; thus, it is important to know which species dominates a given dune system. The range boundaries of these two species remains unclear given the lack of comprehensive surveys. In an attempt to determine these boundaries, we conducted a literature survey of 98 studies that either stated the range limits and/or included field-based studies/observations of the two grass species. We then produced an interactive map that summarizes the locations of the surveyed papers and books. The literature review suggests that the current southern range limit for A. breviligulata is Cape Fear, NC, and the northern range limit for U. paniculata is Assateague Island, on the Maryland and Virginia border. Our data suggest a northward expansion of U. paniculata, possibly associated with warming trends observed near the northern range limit in Painter, VA. In contrast, the data regarding a range shift for A. breviligulata remain inconclusive. We also compare our literature-based map with geolocated records from the Global Biodiversity Information Facility and iNaturalist research grade crowd-sourced observations. We intend for our literature-based map to aid coastal researchers who are interested in the dynamics of these two species and the potential for their ranges to shift as a result of climate change.

3.
PLoS One ; 10(2): e0117283, 2015.
Article in English | MEDLINE | ID: mdl-25658824

ABSTRACT

Invasive species can alter the succession of ecological communities because they are often adapted to the disturbed conditions that initiate succession. The extent to which this occurs may depend on how widely they are distributed across environmental gradients and how long they persist over the course of succession. We focus on plant communities of the USA Pacific Northwest coastal dunes, where disturbance is characterized by changes in sediment supply, and the plant community is dominated by two introduced grasses--the long-established Ammophila arenaria and the currently invading A. breviligulata. Previous studies showed that A. breviligulata has replaced A. arenaria and reduced community diversity. We hypothesize that this is largely due to A. breviligulata occupying a wider distribution across spatial environmental gradients and persisting in later-successional habitat than A. arenaria. We used multi-decadal chronosequences and a resurvey study spanning 2 decades to characterize distributions of both species across space and time, and investigated how these distributions were associated with changes in the plant community. The invading A. breviligulata persisted longer and occupied a wider spatial distribution across the dune, and this corresponded with a reduction in plant species richness and native cover. Furthermore, backdunes previously dominated by A. arenaria switched to being dominated by A. breviligulata, forest, or developed land over a 23-yr period. Ammophila breviligulata likely invades by displacing A. arenaria, and reduces plant diversity by maintaining its dominance into later successional backdunes. Our results suggest distinct roles in succession, with A. arenaria playing a more classically facilitative role and A. breviligulata a more inhibitory role. Differential abilities of closely-related invasive species to persist through time and occupy heterogeneous environments allows for distinct impacts on communities during succession.


Subject(s)
Introduced Species , Poaceae/growth & development , Biota , Ecosystem , Geologic Sediments/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...