Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Genome Biol ; 25(1): 191, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026273

ABSTRACT

BACKGROUND: The encoding of cell intrinsic drug resistance states in breast cancer reflects the contributions of genomic and non-genomic variations and requires accurate estimation of clonal fitness from co-measurement of transcriptomic and genomic data. Somatic copy number (CN) variation is the dominant mutational mechanism leading to transcriptional variation and notably contributes to platinum chemotherapy resistance cell states. Here, we deploy time series measurements of triple negative breast cancer (TNBC) single-cell transcriptomes, along with co-measured single-cell CN fitness, identifying genomic and transcriptomic mechanisms in drug-associated transcriptional cell states. RESULTS: We present scRNA-seq data (53,641 filtered cells) from serial passaging TNBC patient-derived xenograft (PDX) experiments spanning 2.5 years, matched with genomic single-cell CN data from the same samples. Our findings reveal distinct clonal responses within TNBC tumors exposed to platinum. Clones with high drug fitness undergo clonal sweeps and show subtle transcriptional reversion, while those with weak fitness exhibit dynamic transcription upon drug withdrawal. Pathway analysis highlights convergence on epithelial-mesenchymal transition and cytokine signaling, associated with resistance. Furthermore, pseudotime analysis demonstrates hysteresis in transcriptional reversion, indicating generation of new intermediate transcriptional states upon platinum exposure. CONCLUSIONS: Within a polyclonal tumor, clones with strong genotype-associated fitness under platinum remained fixed, minimizing transcriptional reversion upon drug withdrawal. Conversely, clones with weaker fitness display non-genomic transcriptional plasticity. This suggests CN-associated and CN-independent transcriptional states could both contribute to platinum resistance. The dominance of genomic or non-genomic mechanisms within polyclonal tumors has implications for drug sensitivity, restoration, and re-treatment strategies.


Subject(s)
Drug Resistance, Neoplasm , Single-Cell Analysis , Transcriptome , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Humans , Animals , Drug Resistance, Neoplasm/genetics , Female , Mice , DNA Copy Number Variations , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Epithelial-Mesenchymal Transition/genetics
2.
Nature ; 612(7938): 106-115, 2022 12.
Article in English | MEDLINE | ID: mdl-36289342

ABSTRACT

How cell-to-cell copy number alterations that underpin genomic instability1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer2, remains understudied. Here, by applying scaled single-cell whole-genome sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells.


Subject(s)
Genomics , Mutation , Ovarian Neoplasms , Single-Cell Analysis , Triple Negative Breast Neoplasms , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phylogeny , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
3.
Nat Commun ; 13(1): 4534, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927228

ABSTRACT

Assessing tumour gene fitness in physiologically-relevant model systems is challenging due to biological features of in vivo tumour regeneration, including extreme variations in single cell lineage progeny. Here we develop a reproducible, quantitative approach to pooled genetic perturbation in patient-derived xenografts (PDXs), by encoding single cell output from transplanted CRISPR-transduced cells in combination with a Bayesian hierarchical model. We apply this to 181 PDX transplants from 21 breast cancer patients. We show that uncertainty in fitness estimates depends critically on the number of transplant cell clones and the variability in clone sizes. We use a pathway-directed allelic series to characterize Notch signaling, and quantify TP53 / MDM2 drug-gene conditional fitness in outlier patients. We show that fitness outlier identification can be mirrored by pharmacological perturbation. Overall, we demonstrate that the gene fitness landscape in breast PDXs is dominated by inter-patient differences.


Subject(s)
Breast Neoplasms , Clustered Regularly Interspaced Short Palindromic Repeats , Animals , Bayes Theorem , Breast Neoplasms/genetics , Disease Models, Animal , Female , Heterografts , Humans , Xenograft Model Antitumor Assays
4.
Nature ; 595(7868): 585-590, 2021 07.
Article in English | MEDLINE | ID: mdl-34163070

ABSTRACT

Progress in defining genomic fitness landscapes in cancer, especially those defined by copy number alterations (CNAs), has been impeded by lack of time-series single-cell sampling of polyclonal populations and temporal statistical models1-7. Here we generated 42,000 genomes from multi-year time-series single-cell whole-genome sequencing of breast epithelium and primary triple-negative breast cancer (TNBC) patient-derived xenografts (PDXs), revealing the nature of CNA-defined clonal fitness dynamics induced by TP53 mutation and cisplatin chemotherapy. Using a new Wright-Fisher population genetics model8,9 to infer clonal fitness, we found that TP53 mutation alters the fitness landscape, reproducibly distributing fitness over a larger number of clones associated with distinct CNAs. Furthermore, in TNBC PDX models with mutated TP53, inferred fitness coefficients from CNA-based genotypes accurately forecast experimentally enforced clonal competition dynamics. Drug treatment in three long-term serially passaged TNBC PDXs resulted in cisplatin-resistant clones emerging from low-fitness phylogenetic lineages in the untreated setting. Conversely, high-fitness clones from treatment-naive controls were eradicated, signalling an inversion of the fitness landscape. Finally, upon release of drug, selection pressure dynamics were reversed, indicating a fitness cost of treatment resistance. Together, our findings define clonal fitness linked to both CNA and therapeutic resistance in polyclonal tumours.


Subject(s)
DNA Copy Number Variations , Drug Resistance, Neoplasm , Triple Negative Breast Neoplasms/genetics , Animals , Cell Line, Tumor , Cisplatin/pharmacology , Clone Cells/pathology , Female , Genetic Fitness , Humans , Mice , Models, Statistical , Neoplasm Transplantation , Tumor Suppressor Protein p53/genetics , Whole Genome Sequencing
5.
Sci Rep ; 11(1): 9812, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33963218

ABSTRACT

CX-5461 is a G-quadruplex (G4) ligand currently in trials with initial indications of clinical activity in cancers with defects in homologous recombination repair. To identify more genetic defects that could sensitize tumors to CX-5461, we tested synthetic lethality for 480 DNA repair and genome maintenance genes to CX-5461, pyridostatin (PDS), a structurally unrelated G4-specific stabilizer, and BMH-21, which binds GC-rich DNA but not G4 structures. We identified multiple members of HRD, Fanconi Anemia pathways, and POLQ, a polymerase with a helicase domain important for G4 structure resolution. Significant synthetic lethality was observed with UBE2N and RNF168, key members of the DNA damage response associated ubiquitin signaling pathway. Loss-of-function of RNF168 and UBE2N resulted in significantly lower cell survival in the presence of CX-5461 and PDS but not BMH-21. RNF168 recruitment and histone ubiquitination increased with CX-5461 treatment, and nuclear ubiquitination response frequently co-localized with G4 structures. Pharmacological inhibition of UBE2N acted synergistically with CX-5461. In conclusion, we have uncovered novel genetic vulnerabilities to CX-5461 with potential significance for patient selection in future clinical trials.


Subject(s)
Benzothiazoles/pharmacology , DNA Damage , G-Quadruplexes , Naphthyridines/pharmacology , Neoplasm Proteins/metabolism , Neoplasms , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , HCT116 Cells , Humans , Neoplasms/drug therapy , Neoplasms/metabolism
6.
PLoS Comput Biol ; 16(9): e1008270, 2020 09.
Article in English | MEDLINE | ID: mdl-32966276

ABSTRACT

We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal.


Subject(s)
DNA Methylation , Single-Cell Analysis , Cluster Analysis , CpG Islands , Humans , Probability , Sequence Analysis, DNA/methods
7.
Cell ; 179(5): 1207-1221.e22, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31730858

ABSTRACT

Accurate measurement of clonal genotypes, mutational processes, and replication states from individual tumor-cell genomes will facilitate improved understanding of tumor evolution. We have developed DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods. Using DLP+, we have generated a resource of 51,926 single-cell genomes and matched cell images from diverse cell types including cell lines, xenografts, and diagnostic samples with limited material. From this resource we have defined variation in mitotic mis-segregation rates across tissue types and genotypes. Analysis of matched genomic and image measurements revealed correlations between cellular morphology and genome ploidy states. Aggregation of cells sharing copy number profiles allowed for calculation of single-nucleotide resolution clonal genotypes and inference of clonal phylogenies and avoided the limitations of bulk deconvolution. Finally, joint analysis over the above features defined clone-specific chromosomal aneuploidy in polyclonal populations.


Subject(s)
DNA Replication/genetics , Genome, Human , High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Aneuploidy , Animals , Cell Cycle/genetics , Cell Line, Tumor , Cell Shape , Cell Survival , Chromosomes, Human/genetics , Clone Cells , DNA Transposable Elements/genetics , Diploidy , Female , Genotype , Humans , Male , Mice , Mutation/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics
8.
Genome Biol ; 20(1): 210, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31623682

ABSTRACT

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) is a powerful tool for studying complex biological systems, such as tumor heterogeneity and tissue microenvironments. However, the sources of technical and biological variation in primary solid tumor tissues and patient-derived mouse xenografts for scRNA-seq are not well understood. RESULTS: We use low temperature (6 °C) protease and collagenase (37 °C) to identify the transcriptional signatures associated with tissue dissociation across a diverse scRNA-seq dataset comprising 155,165 cells from patient cancer tissues, patient-derived breast cancer xenografts, and cancer cell lines. We observe substantial variation in standard quality control metrics of cell viability across conditions and tissues. From the contrast between tissue protease dissociation at 37 °C or 6 °C, we observe that collagenase digestion results in a stress response. We derive a core gene set of 512 heat shock and stress response genes, including FOS and JUN, induced by collagenase (37 °C), which are minimized by dissociation with a cold active protease (6 °C). While induction of these genes was highly conserved across all cell types, cell type-specific responses to collagenase digestion were observed in patient tissues. CONCLUSIONS: The method and conditions of tumor dissociation influence cell yield and transcriptome state and are both tissue- and cell-type dependent. Interpretation of stress pathway expression differences in cancer single-cell studies, including components of surface immune recognition such as MHC class I, may be especially confounded. We define a core set of 512 genes that can assist with the identification of such effects in dissociated scRNA-seq experiments.


Subject(s)
Genomics/methods , Neoplasms/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Cold Temperature , Collagenases , Humans , Mice , Peptide Hydrolases , Stress, Physiological , Transcriptome
9.
Genome Biol ; 20(1): 54, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30866997

ABSTRACT

Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be mapped for genome-transcriptome association. We present clonealign, which assigns gene expression states to cancer clones using single-cell RNA and DNA sequencing independently sampled from a heterogeneous population. We apply clonealign to triple-negative breast cancer patient-derived xenografts and high-grade serous ovarian cancer cell lines and discover clone-specific dysregulated biological pathways not visible using either sequencing method alone.


Subject(s)
Biomarkers, Tumor/genetics , Cystadenocarcinoma, Serous/genetics , High-Throughput Nucleotide Sequencing/methods , Models, Statistical , Ovarian Neoplasms/genetics , Single-Cell Analysis/methods , Software , Triple Negative Breast Neoplasms/genetics , Animals , Clone Cells , Cystadenocarcinoma, Serous/pathology , Female , Humans , Mice, Inbred NOD , Mice, SCID , Ovarian Neoplasms/pathology , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Proc Natl Acad Sci U S A ; 113(30): 8484-9, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27412862

ABSTRACT

The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10(-6) and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells.


Subject(s)
Genome, Human/genetics , Genomics/methods , Nucleic Acid Amplification Techniques/methods , Single-Cell Analysis/methods , Alleles , Cell Line , Cell Line, Tumor , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing/methods , Humans , Polymorphism, Single Nucleotide , Reproducibility of Results
11.
Nat Methods ; 13(7): 573-6, 2016 07.
Article in English | MEDLINE | ID: mdl-27183439

ABSTRACT

Single-cell DNA sequencing has great potential to reveal the clonal genotypes and population structure of human cancers. However, single-cell data suffer from missing values and biased allelic counts as well as false genotype measurements owing to the sequencing of multiple cells. We describe the Single Cell Genotyper (https://bitbucket.org/aroth85/scg), an open-source software based on a statistical model coupled with a mean-field variational inference method, which can be used to address these problems and robustly infer clonal genotypes.


Subject(s)
Cystadenocarcinoma, Serous/genetics , Leukemia/genetics , Mammary Glands, Human/metabolism , Ovarian Neoplasms/genetics , Single-Cell Analysis/methods , Software , Clone Cells , Female , Genome, Human , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Models, Statistical , Polymorphism, Single Nucleotide/genetics
12.
Nat Genet ; 48(7): 758-67, 2016 07.
Article in English | MEDLINE | ID: mdl-27182968

ABSTRACT

We performed phylogenetic analysis of high-grade serous ovarian cancers (68 samples from seven patients), identifying constituent clones and quantifying their relative abundances at multiple intraperitoneal sites. Through whole-genome and single-nucleus sequencing, we identified evolutionary features including mutation loss, convergence of the structural genome and temporal activation of mutational processes that patterned clonal progression. We then determined the precise clonal mixtures comprising each tumor sample. The majority of sites were clonally pure or composed of clones from a single phylogenetic clade. However, each patient contained at least one site composed of polyphyletic clones. Five patients exhibited monoclonal and unidirectional seeding from the ovary to intraperitoneal sites, and two patients demonstrated polyclonal spread and reseeding. Our findings indicate that at least two distinct modes of intraperitoneal spread operate in clonal dissemination and highlight the distribution of migratory potential over clonal populations comprising high-grade serous ovarian cancers.


Subject(s)
Biomarkers, Tumor/genetics , Clone Cells/pathology , Cystadenocarcinoma, Serous/pathology , Genetic Variation/genetics , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/pathology , Tumor Microenvironment/genetics , Aged , Clone Cells/metabolism , Cystadenocarcinoma, Serous/genetics , Disease Progression , Fallopian Tube Neoplasms/genetics , Fallopian Tube Neoplasms/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Humans , Middle Aged , Mutation/genetics , Neoplasm Grading , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Ovarian Neoplasms/genetics , Peritoneal Neoplasms/genetics , Phylogeny , Single-Cell Analysis/methods , Survival Rate
13.
Nature ; 518(7539): 422-6, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25470049

ABSTRACT

Human cancers, including breast cancers, comprise clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution, underpinning important emergent features such as drug resistance and metastasis. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours. However, the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours have not been systematically examined at single-cell resolution. Here we show, using deep-genome and single-cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single-cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies using patient-derived breast cancer xenoengraftment.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Clone Cells/metabolism , Clone Cells/pathology , Genome, Human/genetics , Single-Cell Analysis , Xenograft Model Antitumor Assays , Animals , Breast Neoplasms/secondary , DNA Mutational Analysis , Genomics , Genotype , High-Throughput Nucleotide Sequencing , Humans , Mice , Neoplasm Transplantation , Time Factors , Transplantation, Heterologous , Xenograft Model Antitumor Assays/methods
14.
Genome Res ; 24(11): 1881-93, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25060187

ABSTRACT

The evolution of cancer genomes within a single tumor creates mixed cell populations with divergent somatic mutational landscapes. Inference of tumor subpopulations has been disproportionately focused on the assessment of somatic point mutations, whereas computational methods targeting evolutionary dynamics of copy number alterations (CNA) and loss of heterozygosity (LOH) in whole-genome sequencing data remain underdeveloped. We present a novel probabilistic model, TITAN, to infer CNA and LOH events while accounting for mixtures of cell populations, thereby estimating the proportion of cells harboring each event. We evaluate TITAN on idealized mixtures, simulating clonal populations from whole-genome sequences taken from genomically heterogeneous ovarian tumor sites collected from the same patient. In addition, we show in 23 whole genomes of breast tumors that the inference of CNA and LOH using TITAN critically informs population structure and the nature of the evolving cancer genome. Finally, we experimentally validated subclonal predictions using fluorescence in situ hybridization (FISH) and single-cell sequencing from an ovarian cancer patient sample, thereby recapitulating the key modeling assumptions of TITAN.


Subject(s)
Algorithms , Computational Biology/methods , DNA Copy Number Variations , Models, Genetic , Neoplasms/genetics , Clone Cells/metabolism , Clone Cells/pathology , Female , Genomics/methods , Genotype , Humans , In Situ Hybridization, Fluorescence/methods , Loss of Heterozygosity , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Reproducibility of Results , Sequence Analysis, DNA/methods , Triple Negative Breast Neoplasms/genetics
15.
Nat Methods ; 11(4): 396-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24633410

ABSTRACT

We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClone's accuracy.


Subject(s)
Bayes Theorem , Cluster Analysis , Models, Biological , Models, Statistical , Neoplasms/metabolism , Algorithms , Alleles , Animals , DNA Mutational Analysis/methods , Gene Expression Regulation, Neoplastic , Humans , Mutation , Reproducibility of Results , Software
SELECTION OF CITATIONS
SEARCH DETAIL