Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Pharmacol Physiol ; 50(8): 621-633, 2023 08.
Article in English | MEDLINE | ID: mdl-37194348

ABSTRACT

Mephedrone is a representative of synthetic cathinones that is known from its rewarding and psychostimulant effects. It exerts behavioural sensitization after repeated and then interrupted administration. In our study, we investigated a role of the L-arginine-NO-cGMP-dependent signalling in the expression of sensitization to hyperlocomotion evoked by mephedrone. The study was carried out in male albino Swiss mice. The tested mice received mephedrone (2.5 mg/kg) for 5 consecutive days and on the 20th day of the experiment (the 'challenge' day) animals received both mephedrone (2.5 mg/kg) and a given substance that affects the L-arginine-NO-cGMP signalling, that is, L-arginine hydrochloride (125 or 250 mg/kg), 7-nitroindazole (10 or 20 mg/kg), L-NAME (25 or 50 mg/kg) or methylene blue (5 or 10 mg/kg). We observed that 7-nitroindazole, L-NAME and methylene blue inhibited the expression of sensitization to the mephedrone-induced hyperlocomotion. Moreover, we demonstrated that the mephedrone-induced sensitization is accompanied by lowered levels of D1 receptors and NR2B subunits in the hippocampus, whereas a concurrent administration of L-arginine hydrochloride, 7-nitroindazole and L-NAME with the mephedrone challenge dose reversed these effects. Methylene blue only reversed the mephedrone-induced effects on hippocampal levels of the NR2B subunit. Our study confirms that the L-arginine-NO-cGMP pathway contributes to mechanisms underlying the expression of sensitization to the mephedrone-evoked hyperlocomotion.


Subject(s)
Methylene Blue , Nitric Oxide , Mice , Male , Animals , NG-Nitroarginine Methyl Ester/pharmacology , Methylene Blue/pharmacology , Nitric Oxide/metabolism , Arginine/pharmacology , Locomotion , Cyclic GMP/metabolism
2.
Behav Brain Res ; 437: 114103, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36089098

ABSTRACT

Mephedrone, a popular psychostimulating substance widely used illegally in recreational purposes, exerts in rodents that regularly and intermittently were exposed to it a sensitized response to the drug. Behavioral sensitization is one of experimental models of drug dependency/abuse liability. In the present study we evaluated a potential involvement of the L-arginine-NO-cGMP pathway in the development of sensitization to the mephedrone-induced hyperlocomotion. Locomotor activity was measured automatically and experiments were performed on male Albino Swiss mice. We demonstrated that a 5-day administration of 7-nitroindazole (10 or 20 mg/kg/day) and L-NAME (50 mg/kg/day) suppressed the development of sensitization to the mephedrone-induced hyperlocomotion. As for L-arginine (125 or 250 mg/kg/day) and methylene blue (5 or 10 mg/kg/day) the obtained outcomes are inconclusive. Furthermore, the lower dose of L-NAME (25 mg/kg/day) surprisingly potentiated the development of sensitization to the mephedrone-induced effects on the spontaneous locomotor activity in mice. In conclusion, our data demonstrated that modulators of the L-arginine-NO-cGMP pathway may differently affect the development of sensitization to the locomotor stimulant effects of mephedrone. Inhibition of neuronal nitric oxide synthase (NOS) seems to prevent this process quite profoundly, non-selective inhibition of NOS may have a dual effect, whereas inhibition of soluble guanylate cyclase may only partially suppress the development of sensitization to the mephedrone-induced effects.


Subject(s)
Cyclic GMP , Nitric Oxide , Animals , Mice , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Cyclic GMP/metabolism , Arginine/pharmacology , Arginine/metabolism , Locomotion , Dose-Response Relationship, Drug
3.
Brain Sci ; 12(2)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35203952

ABSTRACT

Mephedrone belongs to the "party drugs" thanks to its psychostimulant effects, similar to the ones observed after amphetamines. Though mephedrone is used worldwide by humans and in laboratory animals, not all properties of this drug have been discovered yet. Therefore, the main aim of this study was to expand the knowledge about mephedrone's activity in living organisms. A set of behavioral tests (i.e., measurement of the spontaneous locomotor activity, rotarod, chimney, elevated plus maze with its modification, novel object recognition, and pentylenetetrazol seizure tests) were carried out in male albino Swiss mice. Different dose ranges of mephedrone (0.05-5 mg/kg) were administered. We demonstrated that mephedrone at a dose of 5 mg/kg rapidly increased the spontaneous locomotor activity of the tested mice and its repeated administration led to the development of tolerance to these effects. Mephedrone showed the anxiolytic-like potential and improved spatial memory, but it did not affect recognition memory. Moreover, the drug seemed not to have any anticonvulsant or proconvulsant activity. In conclusion, mephedrone induces many central effects. It easily crosses the blood-brain barrier and peaks in the brain quickly after exposure. Our experiment on inducing a hyperlocomotion effect showed that mephedrone's effects are transient and lasted for a relatively short time.

SELECTION OF CITATIONS
SEARCH DETAIL
...