Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(12): e12623, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36636225

ABSTRACT

Inkjet printing (IJP) is a prospective additive manufacturing technology that enables the rapid and precise deposition of thin films or patterns. It offers numerous advantages over other thin-film manufacturing processes, including cost-effectiveness, ease of use, reduced waste material, and scalability. The key advantage of this technique is the ability of the fabrication of complex patterns with very high precision. The IJP gives the possibility of building three-dimensional (3D) structures on the microscale, which is beneficial for modern Li-Ion batteries (LIBs) and All-Solid-State Li-Ion Batteries (ASSLIBs). In contrast to typical laminated composite electrodes manufactured by tape casting and calendaring, 3D electrode design allows the electrolyte to penetrate through the electrode volume, increasing the surface-to-volume ratio and reducing ion diffusion paths. Thus, 3D electrodes/electrolyte structures are one of the most promising strategies for producing next-generation lithium-ion batteries with enhanced electrochemical performance. Although in the literature review, the IJP is frequently reported as a future perspective for the fabrication of 3D electrodes/electrolytes structures for LIBs, only a few works focus on this subject. In this review, we summarize the previous studies devoted to the topic and discuss different bottlenecks and challenges limiting further development.

2.
Phys Chem Chem Phys ; 18(4): 3073-9, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26739745

ABSTRACT

The adsorption of colloidal particles from a suspension on a solid surface is of fundamental importance to many physical and biological systems. In this work, Brownian Dynamics simulations are performed to study the aggregation in a suspension of oppositely charged colloidal particles in the presence of an attractive wall. For sufficiently strong attractions, the wall alters the microstructure of the aggregates so that B2 (CsCl-type) structures are more likely obtained instead of B1 (NaCl-type) structures. The probability of forming either B1 or B2 crystallites depends also on the inverse interaction range κa. Suspensions with small κa are more likely to form B2 crystals than suspensions with larger κa, even if the energetic stability of the B2 phase decreases with decreasing κa. The mechanisms underlying this aggregation and crystallization behaviour are analyzed in detail.

3.
J Colloid Interface Sci ; 458: 241-6, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26232284

ABSTRACT

The percolation behavior of alumina suspensions is studied by computer simulations. The percolation threshold ϕc is calculated, determining the key factors that affect its magnitude: the strength of colloid-colloid attraction and the presence of hydrodynamic interactions (HIs). To isolate the effects of HIs, we compare the results of Brownian Dynamics, which do not include hydrodynamics, with those of Stochastic Rotation Dynamics-Molecular Dynamics, which include hydrodynamics. Our results show that ϕc decreases with the increase of the attraction between the colloids. The inclusion of HIs always leads to more elongated structures during the aggregation process, producing a sizable decrease of ϕc when the colloid-colloid attraction is not too strong. On the other hand, the effects of HIs on ϕc tend to become negligible with increasing attraction strength. Our ϕc values are in good agreement with those estimated by the yield stress model by Flatt and Bowen.


Subject(s)
Aluminum Oxide/chemistry , Colloids/chemistry , Hydrodynamics , Molecular Dynamics Simulation , Rheology , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...