Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(11): 3359-3378, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37246943

ABSTRACT

We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 µs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 µs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , SARS-CoV-2 , Ligands , Binding Sites , Proteins/chemistry , Molecular Docking Simulation
2.
J Chem Inf Model ; 63(3): 718-724, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36719676

ABSTRACT

Relative binding free energy (RBFE) calculations are widely used to aid the process of drug discovery. TIES, Thermodynamic Integration with Enhanced Sampling, is a dual-topology approach to RBFE calculations with support for NAMD and OpenMM molecular dynamics engines. The software has been thoroughly validated on publicly available datasets. Here we describe the open source software along with a web portal (https://ccs-ties.org) that enables users to perform such calculations correctly and rapidly.


Subject(s)
Molecular Dynamics Simulation , Software , Thermodynamics , Drug Discovery
3.
Commun Chem ; 5(1): 136, 2022.
Article in English | MEDLINE | ID: mdl-36320862

ABSTRACT

Automated free energy calculations for the prediction of binding free energies of congeneric series of ligands to a protein target are growing in popularity, but building reliable initial binding poses for the ligands is challenging. Here, we introduce the open-source FEgrow workflow for building user-defined congeneric series of ligands in protein binding pockets for input to free energy calculations. For a given ligand core and receptor structure, FEgrow enumerates and optimises the bioactive conformations of the grown functional group(s), making use of hybrid machine learning/molecular mechanics potential energy functions where possible. Low energy structures are optionally scored using the gnina convolutional neural network scoring function, and output for more rigorous protein-ligand binding free energy predictions. We illustrate use of the workflow by building and scoring binding poses for ten congeneric series of ligands bound to targets from a standard, high quality dataset of protein-ligand complexes. Furthermore, we build a set of 13 inhibitors of the SARS-CoV-2 main protease from the literature, and use free energy calculations to retrospectively compute their relative binding free energies. FEgrow is freely available at https://github.com/cole-group/FEgrow, along with a tutorial.

4.
Sensors (Basel) ; 21(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205594

ABSTRACT

In this work, we discuss the idea and practical implementation of an integrated photonic circuit-based interrogator of fiber Bragg grating (FBG) sensors dedicated to monitoring the condition of the patients exposed to Magnetic Resonance Imaging (MRI) diagnosis. The presented solution is based on an Arrayed Waveguide Grating (AWG) demultiplexer fabricated in generic indium phosphide technology. We demonstrate the consecutive steps of development of the device from design to demonstrator version of the system with confirmed functionality of monitoring the respiratory rate of the patient. The results, compared to those obtained using commercially available bulk interrogator, confirmed both the general concept and proper operation of the device.


Subject(s)
Fiber Optic Technology , Magnetic Resonance Imaging , Humans , Photons , Respiratory Rate
5.
J Chem Theory Comput ; 17(2): 1250-1265, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33486956

ABSTRACT

The TIES (Thermodynamic Integration with Enhanced Sampling) protocol is a formally exact alchemical approach in computational chemistry to the calculation of relative binding free energies. The validity of TIES relies on the correctness of matching atoms across compared pairs of ligands, laying the foundation for the transformation along an alchemical pathway. We implement a flexible topology superimposition algorithm which uses an exhaustive joint-traversal for computing the largest common component(s). The algorithm is employed to enable matching and morphing of partial rings in the TIES protocol along with a validation study using 55 transformations and five different proteins from our previous work. We find that TIES 20 with the RESP charge system, using the new superimposition algorithm, reproduces the previous results with mean unsigned error of 0.75 kcal/mol with respect to the experimental data. Enabling the morphing of partial rings decreases the size of the alchemical region in the dual-topology transformations resulting in a significant improvement in the prediction precision. We find that increasing the ensemble size from 5 to 20 replicas per λ window only has a minimal impact on the accuracy. However, the non-normal nature of the relative free energy distributions underscores the importance of ensemble simulation. We further compare the results with the AM1-BCC charge system and show that it improves agreement with the experimental data by slightly over 10%. This improvement is partly due to AM1-BCC affecting only the charges of the atoms local to the mutation, which translates to even fewer morphed atoms, consequently reducing issues with sampling and therefore ensemble averaging. TIES 20, in conjunction with the enablement of ring morphing, reduces the size of the alchemical region and significantly improves the precision of the predicted free energies.

SELECTION OF CITATIONS
SEARCH DETAIL
...