Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Inorg Biochem ; 257: 112601, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38744143

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid - ß extracellular plaques and tau interfibrillar tangles, leading to memory loss, cognitive decline, and behavioral changes. With dementia posing a growing global health concern, there is an urgent need for comprehensive strategies to address its challenges. The economic burden of dementia is projected to rise significantly, emphasizing the necessity for collaborative efforts in research and healthcare. In the United States alone, millions are affected by AD, with prevalence increasing with age and even affecting younger individuals. The complexity of AD involves intricate biological processes, including the aggregation of amyloid beta, oxidative stress, and metal ion dysregulation. Metal ions, particularly those from copper, iron, and zinc, play pivotal roles in AD pathology, influencing Aß deposition and tau protein accumulation. Current treatments offer symptomatic relief but do not address the underlying disease mechanisms. This paper explores the potential of various chelating compounds to target metal ions involved in AD pathology. N-acylhydrazones, morpholine, chrysin, quinoline, oxindole, cyclam, catechol-based, and quinazolinone-based derivatives show promising chelation activity and therapeutic effects. Metal chelation therapy offers a targeted approach to AD treatment by addressing the core pathology. By selectively binding to metal ions implicated in disease progression, chelators may minimize side effects associated with broad-spectrum treatments. Additionally, chelators may offer neuroprotective effects beyond metal binding, further enhancing their therapeutic potential. Overall, metal chelation therapy presents a promising strategy in combating AD, with the potential to significantly impact disease progression and improve patient outcomes.


Subject(s)
Alzheimer Disease , Chelating Agents , Copper , Zinc , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Chelating Agents/therapeutic use , Chelating Agents/chemistry , Copper/chemistry , Copper/metabolism , Zinc/therapeutic use , Zinc/chemistry , Zinc/metabolism , Iron/metabolism , Iron/chemistry , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors
2.
Inorg Chem ; 63(2): 1068-1082, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38166196

ABSTRACT

To get a better insight into understanding the factors affecting the enhancement of the magnetic anisotropy in single molecule (single ion) magnets, two cobalt(II) complexes based on a tridentate ligand 2,6-di(thiazol-2-yl)pyridine substituted at the 4-position with N-methyl-pyrrol-2-yl have been synthesized and studied by X-ray crystallography, AC and DC magnetic data, FIRMS and HFEPR spectra, and theoretical calculations. The change of the counteranion in starting Co(II) salts results in the formation of pentacoordinated mononuclear [Co(mpyr-dtpy)Cl2]·2MeCN (1) complex and binuclear [Co(mpyr-dtpy)2][Co(NCS)4] (2) compound. The observed marked distortion of trigonal bipyramid geometry in 1 and cationic octahedral and anionic tetrahedral units in 2 brings up a question about the validity of the spin-Hamiltonian formalism and the possibility of determining the value and sign of the zero-field splitting D parameter. Both complexes exhibit field-induced slow magnetic relaxation with two or three relaxation channels at BDC = 0.3 T. The high-frequency relaxation time in the reciprocal form τ(HF)-1 = CTn develops according to the Raman relaxation mechanism (for 2, n = 8.8) and the phonon-bottleneck-like mechanism (for 1, n = 2.3). The high-frequency relaxation time at T = 2.0 K and BDC = 0.30 T is τ(HF) = 96 and 47 µs for 1 and 2, respectively.

3.
RSC Adv ; 12(42): 27648-27665, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36276031

ABSTRACT

Copper(ii) complexes with 2-ethylpyridine (1 and 2), 2-(hydroxyethyl)pyridine (3) and 2-(hydroxymethyl)pyridine (4) have been synthesized and characterized. All inorganic compounds have been studied by X-ray diffraction, thermogravimetry, vibrational and EPR spectroscopy as well as theoretical methods. The geometry of the complexes 1, 3 and 4 adopts nearly perfect geometry close to square planar (1, 4) or square pyramid (3) stereochemistry, respectively. The distortion of five coordinated copper(ii) ions in complex 2 indicates intermediate geometry between square pyramidal and trigonal pyramidal geometry. Further, the magnetic measurements have shown antiferromagnetic behaviour of the prepared complexes in a wide range of temperatures. The antiferromagnetic behaviour of 2 should originate from the superexchange interactions between each copper(ii) ion by the mixed chloride and µ4-O ion pathways. Besides, the weak antiferromagnetic character of 2 can be also attributed to the presence of intrachain exchange between dimeric units through double oxide ion. In complex 3, strong antiferromagnetic coupling between Cu(ii) centres in the Cu2O2Cl2 moiety is found. The cytotoxicity of all compounds was tested in vitro against various cancer cell lines: human lung adenocarcinoma (A549), human breast adenocarcinoma (MCF7), human prostate carcinoma; derived from metastatic site: brain (DU-145) and two normal cell lines: human embryonic kidney (HEK293T) and human keratinocyte (HaCat). Furthermore, Pluronic P-123 micelles loaded with selected complexes (1 and 3) were proposed to overcome low solubility and to minimize systemic side effects. More detailed study revealed that complex 3 loaded inside micelles causes DU-145 cells' death with simultaneous decrease of mitochondrial membrane potential and a high level of reactive oxygen species generation. The stability of the compounds 1-4 in DMSO was confirmed by UV-Vis and FT-IR spectra studies.

4.
Inorg Chem ; 61(15): 5701-5714, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35377620

ABSTRACT

A one-pot reaction of a copper source (metallic powder Cu0 or Cu2+ salts) and bpy (bpy = 2,2'-bipyridine) in the presence of (NH4)2HPO4 and (NH4)6Mo7O24·4H2O yields heterometallic hybrid compounds of the general type {[Cu(bpy)n(H2O)m]p[P2MoxOy]}. The structures exhibit a number of phosphomolybdate POMs including not only a common Strandberg anion [P2Mo5O23]6- but also its unprecedented bi- and trilacunary derivatives [P2Mo3O18]8- and [P2Mo2O15]8-. The structural determinants including the metal source (copper powder vs copper salts), counterion of the salts, and stoichiometry of the reagents were examined. An ex situ EPR study revealed the formation of different CuII complexes in the reaction mixture depending on the copper precursor. The obtained compounds have been found to possess selectivity toward the sorption of methylene blue in a mixture of organic dyes. DC magnetic measurements of 1-3 indicate rather strong antiferromagnetic metal-metal exchange interactions. Compound 1 exhibits field-induced slow magnetic relaxation in AC magnetic measurements, which is a rarely observed phenomenon among Cu(II) complexes.

5.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34358111

ABSTRACT

A group of cytotoxic half-sandwich iridium(III) complexes with aminomethyl(diphenyl)phosphine derived from fluoroquinolone antibiotics exhibit the ability to (i) accumulate in the nucleus, (ii) induce apoptosis, (iii) activate caspase-3/7 activity, (iv) induce the changes in cell cycle leading to G2/M phase arrest, and (v) radicals generation. Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, circular dichroism, and molecular docking studies. DNA binding experiments established that the complexes interact with DNA by moderate intercalation and predominance of minor groove binding without the capability to cause a double-strand cleavage. The molecular docking study confirmed two binding modes: minor groove binding and threading intercalation with the fluoroquinolone part of the molecule involved in pi stacking interactions and the Ir(III)-containing region positioned within the major or minor groove. Fluorescence spectroscopic data (HSA and apo-Tf titration), together with molecular docking, provided evidence that Ir(III) complexes can bind to the proteins in order to be transferred. All the compounds considered herein were found to bind to the tryptophan residues of HSA within site I (subdomain II A). Furthermore, Ir(III) complexes were found to dock within the apo-Tf binding site, including nearby tyrosine residues.

6.
J Inorg Biochem ; 215: 111311, 2021 02.
Article in English | MEDLINE | ID: mdl-33246642

ABSTRACT

Gold(III) complex containing 2-pyridineethanol has been synthesized and characterized structurally by single crystal X-ray diffraction, vibrational spectroscopy, 1H NMR spectroscopy, electrochemical study, and DFT calculations. The Au(III) ion is four coordinated with one N-donor ligand (L) and three Cl anions. The Okuniewski's (τ'4=0.018) has been used to estimate the angular distortion from ideal square planar geometry. The vibrational spectroscopy studies, in the solid state and DMSO solution and cyclic voltammetry, have been performed to determine its stability and redox activity, respectively. A complete assignment of the IR and Raman spectra has been made based on the calculated potential energy distribution (PED). The theoretical calculations have been made for two functionals and several basis sets. The compound has been evaluated for its antiproliferative properties in a human lung adenocarcinoma cell line (A549), mouse colon carcinoma (CT26), human breast adenocarcinoma (MCF-7), human prostate carcinoma derived from the metastatic site in the brain (DU-145), and PANC-1 human pancreas/duct carcinoma cell line and non-tumorigenic cell lines: HaCat (human keratinocyte), and HEK293T (human embryonic kidney). Au(III) complex cytotoxicity is significantly against A549 and MCF-7 cells as in the reference drug: cisplatin. Studies of the interactions of Au(III) complex with DNA, HSA (human serum albumin) have been performed. The results from modeling docking simulations indicate that the title complex exerts anticancer effects in vitro based on different mechanisms of action to compare with cisplatin.


Subject(s)
Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Gold/chemistry , Pyridines/chemistry , Pyridines/pharmacology , A549 Cells , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , DNA/metabolism , Density Functional Theory , HEK293 Cells , Humans , Ligands , MCF-7 Cells , Magnetic Resonance Spectroscopy/methods , Mice , Molecular Docking Simulation , Serum Albumin, Human/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , X-Ray Diffraction/methods
7.
J Inorg Biochem ; 191: 8-20, 2019 02.
Article in English | MEDLINE | ID: mdl-30448716

ABSTRACT

In the present study, two binuclear copper(II) coordination compounds bridged by hydroxy- and thiodipropionic acid have been synthesized. The structure of compounds was determined by X-ray crystallography. The central copper atoms exist in square pyramidal surroundings. Basal plane is formed by nitrogen atoms of amines and oxygen atoms of bridges, whereas apical positions are occupied by oxygen atoms of coordinated water molecules. Temperature dependence study of magnetic susceptibility proved strong antiferromagnetic exchange between copper atoms in hydroxy-bridged complex. These coordination compounds were also tested for their biological activities in vitro. Both coordination compounds exhibit pronounced cytocompatibility in mammalian epithelial cells with no induction of oxidative stress and DNA fragmentation. Moreover, synthesized compounds are hemocompatible and do not alter expression of a marker of multiple cellular stress, p53. On the other hand, both compounds had stimulatory effect on expression of metallothioneins (MT-1/2 and MT-3). Antimicrobial testing on Escherichia coli, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus revealed that both copper compounds exhibit antibacterial activity regardless the cell wall composition. Overall, current work presents a synthesis of Cu(II) coordination compounds with interesting biological behavior and with a promising potential to be further tested in pre-clinical models.


Subject(s)
Anti-Bacterial Agents/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Propionates/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Biocompatible Materials , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Hemolysis/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Structure , Wound Healing/drug effects
8.
Inorg Chem ; 57(20): 12740-12755, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30277381

ABSTRACT

Three pentacoordinate complexes of the type [Co( pypz)X2], where pypz is a tridentate ligand 2,6-bis(pyrazol-1-yl)pyridine and X = Cl- (1), NCS- (2), and NCO- (3), have been synthesized, and their structures have been determined by X-ray analysis. The DC magnetic data show a sizable magnetic anisotropy, which was confirmed by high-field high-frequency electron paramagnetic resonance (HF EPR) measurements. Well-resolved HF EPR spectra of high spin cobalt (II) were observed over the microwave frequency range 100-650 GHz. The experimental spectra of both complexes were simulated with axial g tensor components, a very large positive D value, and different E/ D ratios. To determine the exact D value for 2 (38.4 cm-1) and 3 (40.92 cm-1), the far-infrared magnetic spectroscopy method was used. Knowledge of the zero field splitting parameters and their signs is crucial in interpreting the single-molecule magnet or single chain magnet behavior. The AC susceptibility data confirm that these complexes exhibit a slow magnetic relaxation under small applied DC field with two (1 and 3) or three (2) relaxation modes.

9.
Dalton Trans ; 44(19): 8876-88, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25871579

ABSTRACT

We have synthesized and structurally characterized a new doubly chloro bridged dimeric copper(II) complex, [Cu2(µ-Cl)2(HL)2Cl2] (1) based on a Schiff base ligand, 5-[(pyridin-2-ylmethylene)-amino]-pentan-1-ol). Single crystal X-ray diffraction shows the presence of dinuclear copper(II) centres in a square pyramidal geometry linked by obtuse double chloro bridge. The magnetic study illustrated that weak antiferromagnetic interactions (J = -0.47 cm(-1)) prevail in complex 1 which is well supported by magneto-structural correlation. This compound adds to the library of doubly chloro bridged copper(ii) complexes in the regime of spin state cross over. DFT calculations have been conducted within a broken-symmetry (BS) framework to investigate the exchange interaction further which depicts that the approximate spin projection technique yields the best corroboration of the experimental J value. Spin density plots show the presence of an ∼0.52e charge residing on the copper atom along with a substantial charge on bridging and peripheral chlorine atoms. The potential of complex1 to act as an anticancer agent is thoroughly examined on a series of liver cancer cell lines and screening shows the HepG2 cell line exhibits maximum cytotoxicity by phosphatidyl serine exposure in the outer cell membrane associated with ROS generation and mitochondrial depolarization with increasing time in the in vitro model system.


Subject(s)
Antineoplastic Agents/pharmacology , Copper/pharmacology , Organometallic Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Copper/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Magnetic Phenomena , Membrane Potential, Mitochondrial/drug effects , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Quantum Theory , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
10.
J Comput Chem ; 36(11): 821-32, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25727322

ABSTRACT

The halogen bonded complexes between six carbonyl bases and molecular chlorine are investigated theoretically. The interaction energies calculated at the CCSD(T)/aug-cc-pVTZ level range between -1.61 and -3.50 kcal mol(-1). These energies are related to the ionization potential, proton affinity, and also to the most negative values (V(s,min)) on the electrostatic potential surface of the carbonyl bases. A symmetry adapted perturbation theory decomposition of the energies has been performed. The interaction results in an elongation of the Cl-Cl bond and a contraction of the CF and CH bonds accompanied by a blue shift of the ν(CH) vibrations. The properties of the Cl2 molecules are discussed as a function of the σ*(Cl-Cl) occupation, the hybridization, and the occupation of the Rydberg orbitals of the two chlorine atoms. Our calculations predict a large enhancement of the infrared and Raman intensities of the ν(Cl-Cl) vibration on going from isolated to complexed Cl2.

11.
J Phys Chem B ; 111(42): 12228-38, 2007 Oct 25.
Article in English | MEDLINE | ID: mdl-17914793

ABSTRACT

Theoretical studies are performed on enflurane (CHFCl-CF(2)-O-CHF(2)) to investigate the conformational properties and vibrational spectra. Calculations are carried out at the B3LYP/6-31G(d) level along with a natural bond orbital (NBO) analysis. Experimental infrared spectra are investigated in carbon tetrachloride solution at room temperature and in argon matrix at 12 K. In agreement with previously reported data (Pfeiffer, A.; Mack, H.-G.; Oberhammer, H. J. Am. Chem. Soc. 1998, 120, 6384), it is shown that the four most stable conformers possess a trans configuration of the C-C-O-C skeleton and a gauche orientation of the CHF(2) group (with respect to the central C-O bond). These conformations are favored by electrostatic interaction between the H atom of the CHF(2) group and the F atoms of the central CF(2) group. Hyperconjugation effects from the O lone pairs to the antibonding orbitals of the neighboring C-H and C-F bonds also contribute to the stability of the four conformers. The vibrational frequencies, infrared intensities, and potential energy distributions are calculated at the same level of theory for the most stable conformers. On the basis of the theoretical results, these conformers are identified in an argon matrix. The influence of the concentration on the nu(CH) vibrations suggests the formations of higher aggregates in solution. Theoretical calculations are carried out on the enflurane dimer. The results show that the dimer is formed between two enflurane conformers having the largest stability. The dimer has an asymmetric cyclic structure, the two enflurane molecules being held together by two nonequivalent C-H...F hydrogen bonds, the C-H bond of the CHFCl group acting as a proton donor, and one of the F atoms of the CHF(2) groups acting as a proton acceptor. The theory predicts a contraction of 0.0014-0.0025 A of the two CH bonds involved in the interaction along with a blue shift of 30-38 cm(-1) of the corresponding nu(C-H) bands, in good agreement with the blue shifts of 35-39 cm(-1) observed in an argon matrix.

SELECTION OF CITATIONS
SEARCH DETAIL