Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Gerontol A Biol Sci Med Sci ; 70(7): 866-72, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25991826

ABSTRACT

BACKGROUND: The aim was to investigate the molecular mechanisms behind exercise training-induced improvements in glucose regulation in aged subjects. METHODS: Twelve elderly male subjects completed 8 weeks of exercise training. Before and after the training period, the subjects completed an oral glucose tolerance test (OGTT) and a muscle biopsy was obtained from the vastus lateralis before and 45 minutes into the OGTT. Blood samples were collected before and up to 120 minutes after glucose intake. RESULTS: Exercise training increased Hexokinase II, GLUT4, Akt2, glycogen synthase (GS), pyruvate dehydrogenase (PDH)-E1α, PDK2 protein, and glycogen content in skeletal muscle. Furthermore, in response to glucose, GS activity was increased and the dephosphorylation of GS site 2 + 2a and 3a was enhanced after the training intervention. The glucose-mediated insulin stimulation of TBC1D4 Thr(642) phosphorylation was increased after exercise training. In the trained state, the PDHa activity was reduced following glucose intake and without changes in phosphorylation level of PDH-E1α. CONCLUSIONS: The present results suggest that exercise training improves glucose regulation in elderly subjects by enhancing the capacity and acute regulation of glucose uptake and by enhancing intracellular glucose removal to glycogen synthesis rather than glucose oxidation.


Subject(s)
Exercise Therapy , Glucose/metabolism , Muscle, Skeletal/metabolism , Aged , Cohort Studies , Glucose Tolerance Test , Glucose Transporter Type 4/metabolism , Glycogen Synthase/metabolism , Humans , Insulin/blood , Male , Middle Aged , Pyruvate Dehydrogenase (Lipoamide)/metabolism
2.
Pflugers Arch ; 467(2): 341-50, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24691558

ABSTRACT

The aim of the present study was to examine the effect of lipopolysaccharide (LPS)-induced inflammation on AMP-activated protein kinase (AMPK) and pyruvate dehydrogenase (PDH) regulation in human skeletal muscle at rest and during exercise. Nine young healthy physically inactive male subjects completed two trials. In an LPS trial, the subjects received a single LPS injection (0.3 ng/kg body weight) and blood samples and vastus lateralis muscle biopsies were obtained before and 2 h after the LPS injection and immediately after a 10-min one-legged knee extensor exercise bout performed approximately 2½ h after the LPS injection. The exercise bout with muscle samples obtained before and immediately after was repeated in a control trial without LPS injection. The plasma tumor necrosis factor α concentration increased 17-fold 2 h after LPS relative to before. Muscle lactate and muscle glycogen were unchanged from before to 2 h after LPS and exercise increased muscle lactate and decreased muscle glycogen in the control (P < 0.05) and the LPS (0.05 ≤ P < 0.1) trial with no differences between the trials. AMPK, acetyl-CoA carboxylase (ACC) and PDH phosphorylation as well as PDHa activity were unaffected 2 h after LPS relative to before. Exercise decreased (P < 0.05) PDH and increased (P < 0.05) AMPK and ACC phosphorylation as well as increased (P < 0.05) PDHa activity similarly in the LPS and control trial. In conclusion, LPS-induced inflammation does not affect resting or exercise-induced AMPK and PDH regulation in human skeletal muscle. This suggests that metabolic flexibility during exercise is maintained during short-term low-grade inflammation in humans.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Exercise , Muscle, Skeletal/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Acetyl-CoA Carboxylase/metabolism , Adult , Glycogen/metabolism , Humans , Inflammation/etiology , Inflammation/metabolism , Lactic Acid/metabolism , Lipopolysaccharides/toxicity , Male , Muscle, Skeletal/physiology , Phosphorylation , Tumor Necrosis Factor-alpha/blood
3.
Am J Physiol Heart Circ Physiol ; 307(8): H1111-9, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25128170

ABSTRACT

In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol (n = 14) and the other half received placebo (n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol (n = 9) or placebo (n = 7). The group that trained with placebo showed a ~20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis.


Subject(s)
Exercise , Muscle, Skeletal/physiology , Neovascularization, Physiologic , Stilbenes/pharmacology , Aged , Case-Control Studies , Dietary Supplements , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Male , Middle Aged , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Resveratrol , Stilbenes/administration & dosage , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
5.
Eur J Appl Physiol ; 114(2): 345-57, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24292882

ABSTRACT

PURPOSE: This study aimed at determining the effects of bed rest on the skeletal muscle leptin signaling system. METHODS: Deltoid and vastus lateralis muscle biopsies and blood samples were obtained from 12 healthy young men (mean ± SD, BMI 22.8 ± 2.7 kg/m(2)) before and after 7 days of bed rest. Leptin receptor isoforms (OB-Rs), suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) protein expression and signal transducer and activator of transcription 3 (STAT3) phosphorylation were analyzed by Western blot. RESULTS: After bed rest basal insulin concentration was increased by 53% (P < 0.05), the homeostasis model assessment (HOMA) by 40% (P < 0.05), and serum leptin concentration by 35% (P < 0.05) with no changes in body fat mass. Although the soluble isoform of the leptin receptor (s-OBR) remained unchanged, the molar excess of leptin over sOB-R was increased by 1.4-fold after bed rest (P < 0.05). OB-Rs and SOCS3 protein expression, and STAT3 phosphorylation level remained unaffected in deltoid and vastus lateralis by bed rest, as PTP1B in the deltoid. PTP1B was increased by 90% with bed rest in the vastus lateralis (P < 0.05). There was a linear relationship between the increase in vastus lateralis PTP1B and the increase in both basal insulin concentrations (r = 0.66, P < 0.05) and HOMA (r = 0.68, P < 0.05) with bed rest. CONCLUSIONS: One week of bed rest is associated with increased leptin levels without augmenting STAT3 phosphorylation indicating some degree of leptin resistance in skeletal muscle, which can be explained, at least in part, by an elevation of PTP1B protein content in the vastus lateralis muscle.


Subject(s)
Bed Rest , Leptin/metabolism , Muscle, Skeletal/metabolism , Signal Transduction , Adult , Case-Control Studies , Humans , Leptin/blood , Male , Muscle, Skeletal/physiology , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism
7.
J Physiol ; 591(20): 5047-59, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23878368

ABSTRACT

Ageing is thought to be associated with decreased vascular function partly due to oxidative stress. Resveratrol is a polyphenol, which in animal studies has been shown to decrease atherosclerosis, and improve cardiovascular health and physical capacity, in part through its effects on Sirtuin 1 signalling and through an improved antioxidant capacity. We tested the hypothesis that resveratrol supplementation enhances training-induced improvements in cardiovascular health parameters in aged men. Twenty-seven healthy physically inactive aged men (age: 65 ± 1 years; body mass index: 25.4 ± 0.7 kg m(-2); mean arterial pressure (MAP): 95.8 ± 2.2 mmHg; maximal oxygen uptake: 2488 ± 72 ml O2 min(-1)) were randomized into 8 weeks of either daily intake of either 250 mg trans-resveratrol (n = 14) or of placebo (n = 13) concomitant with high-intensity exercise training. Exercise training led to a 45% greater (P < 0.05) increase in maximal oxygen uptake in the placebo group than in the resveratrol group and to a decrease in MAP in the placebo group only (-4.8 ± 1.7 mmHg; P < 0.05). The interstitial level of vasodilator prostacyclin was lower in the resveratrol than in the placebo group after training (980 ± 90 vs. 1174 ± 121 pg ml(-1); P < 0.02) and muscle thromboxane synthase was higher in the resveratrol group after training (P < 0.05). Resveratrol administration also abolished the positive effects of exercise on low-density lipoprotein, total cholesterol/high-density lipoprotein ratio and triglyceride concentrations in blood (P < 0.05). Resveratrol did not alter the effect of exercise training on the atherosclerosis marker vascular cell adhesion molecule 1 (VCAM-1). Sirtuin 1 protein levels were not affected by resveratrol supplementation. These findings indicate that, whereas exercise training effectively improves several cardiovascular health parameters in aged men, concomitant resveratrol supplementation can blunt these effects.


Subject(s)
Cardiovascular System/drug effects , Exercise , Stilbenes/pharmacology , Aged , Cardiovascular System/metabolism , Cholesterol, LDL/blood , Double-Blind Method , Epoprostenol/metabolism , Humans , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Oxygen Consumption , Resveratrol , Sedentary Behavior , Thromboxane-A Synthase/metabolism , Triglycerides/blood , Vascular Cell Adhesion Molecule-1/metabolism
8.
Am J Physiol Regul Integr Comp Physiol ; 301(5): R1501-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21832205

ABSTRACT

The transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α plays a role in regulation of several metabolic pathways. By use of whole body PGC-1α knockout (KO) mice, we investigated the role of PGC-1α in fasting, acute exercise and exercise training-induced regulation of key proteins in gluconeogenesis and metabolism in the liver. In both wild-type (WT) and PGC-1α KO mice liver, the mRNA content of the gluconeogenic proteins glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) was upregulated during fasting. Pyruvate carboxylase (PC) remained unchanged after fasting in WT mice, but it was upregulated in PGC-1α KO mice. In response to a single exercise bout, G6Pase mRNA was upregulated in both genotypes, whereas no significant changes were detected in PEPCK or PC mRNA. While G6Pase and PC protein remained unchanged, liver PEPCK protein content was higher in trained than untrained mice of both genotypes. The mRNA content of the mitochondrial proteins cytochrome c (Cyt c) and cytochrome oxidase (COX) subunit I was unchanged in response to fasting. The mRNA and protein content of Cyt c and COXI increased in the liver in response to a single exercise bout and prolonged exercise training, respectively, in WT mice, but not in PGC-1α KO mice. Neither fasting nor exercise affected the mRNA expression of antioxidant enzymes in the liver, and knockout of PGC-1α had no effect. In conclusion, these results suggest that PGC-1α plays a pivotal role in regulation of Cyt c and COXI expression in the liver in response to a single exercise bout and prolonged exercise training, which implies that exercise training-induced improvements in oxidative capacity of the liver is regulated by PGC-1α.


Subject(s)
Fasting/metabolism , Liver/metabolism , Physical Exertion , Trans-Activators/metabolism , AMP-Activated Protein Kinases/metabolism , Adaptation, Physiological , Animals , Antioxidants/metabolism , Blood Glucose/metabolism , Cytochromes c/genetics , Cytochromes c/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Expression Regulation, Enzymologic , Gluconeogenesis/genetics , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Glycogen/metabolism , Mice , Mice, Knockout , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Phosphorylation , Pyruvate Carboxylase/genetics , Pyruvate Carboxylase/metabolism , RNA, Messenger/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Time Factors , Trans-Activators/deficiency , Trans-Activators/genetics , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...