Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(26): 7852-7860, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904438

ABSTRACT

Thin-film stacks F|H consisting of a ferromagnetic-metal layer F and a heavy-metal layer H are spintronic model systems. Here, we present a method to measure the ultrabroadband spin conductance across a layer X between F and H at terahertz frequencies, which are the natural frequencies of spin-transport dynamics. We apply our approach to MgO tunneling barriers with thickness d = 0-6 Å. In the time domain, the spin conductance Gs has two components. An instantaneous feature arises from processes like coherent spin tunneling. Remarkably, a longer-lived component is a hallmark of incoherent resonant spin tunneling mediated by MgO defect states, because its relaxation time grows monotonically with d to as much as 270 fs at d = 6.0 Å. Our results are in full agreement with an analytical model. They indicate that terahertz spin-conductance spectroscopy will yield new and relevant insights into ultrafast spin transport in a wide range of spintronic nanostructures.

2.
Adv Mater ; 33(9): e2006281, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33506577

ABSTRACT

The efficient conversion of spin to charge transport and vice versa is of major relevance for the detection and generation of spin currents in spin-based electronics. Interfaces of heterostructures are known to have a marked impact on this process. Here, terahertz (THz) emission spectroscopy is used to study ultrafast spin-to-charge-current conversion (S2C) in about 50 prototypical F|N bilayers consisting of a ferromagnetic layer F (e.g., Ni81 Fe19 , Co, or Fe) and a nonmagnetic layer N with strong (Pt) or weak (Cu and Al) spin-orbit coupling. Varying the structure of the F/N interface leads to a drastic change in the amplitude and even inversion of the polarity of the THz charge current. Remarkably, when N is a material with small spin Hall angle, a dominant interface contribution to the ultrafast charge current is found. Its magnitude amounts to as much as about 20% of that found in the F|Pt reference sample. Symmetry arguments and first-principles calculations strongly suggest that the interfacial S2C arises from skew scattering of spin-polarized electrons at interface imperfections. The results highlight the potential of skew scattering for interfacial S2C and propose a promising route to enhanced S2C by tailored interfaces at all frequencies from DC to terahertz.

3.
Phys Rev Lett ; 124(9): 093201, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32202861

ABSTRACT

Rotation of the plane of the polarization of light in the presence of a magnetic field, known as the Faraday rotation, is a consequence of the electromagnetic nature of light and has been utilized in many optical devices. Current efforts aim to realize the ultrafast Faraday rotation on a subpicosecond timescale. Thereby, the Faraday medium should allow an ultrafast process by which in the presence of an ultrashort intense magnetic field, the light polarization rotates. We meet these criteria by applying an intense single cycle THz magnetic field to simple molecular liquids and demonstrate the rotation of the plane of polarization of an optical pulse traversing the liquids on a subpicosecond timescale. The effect is attributed to the deflection of an optically induced instantaneous electric polarization under the influence the THz magnetic field. The resolved Faraday rotation scales linearly with the THz magnetic field and quadratically with the molecular polarizability.

4.
Rev Sci Instrum ; 87(5): 053115, 2016 05.
Article in English | MEDLINE | ID: mdl-27250400

ABSTRACT

Sum frequency mixing of fluorescence and ∼1300 nm gate pulses, in a thin ß-barium borate crystal and non-collinear type II geometry, is quantified as part of a femtosecond fluorimeter [X.-X. Zhang et al., Rev. Sci. Instrum. 82, 063108 (2011)]. For a series of fixed phasematching angles, the upconversion efficiency is measured depending on fluorescence wavelength. Two useful orientations of the crystal are related by rotation around the surface normal. Orientation A has higher efficiency (factor ∼3) compared to B at the cost of some loss of spectral coverage for a given crystal angle. It should be used when subtle changes of an otherwise stationary emission band are to be monitored. With orientation B, the fluorescence range λF > 420-750 nm is covered with a single setting of the crystal and less gate scatter around time zero. The accuracy of determining an instantaneous emission band shape is demonstrated by comparing results from two laboratories.

SELECTION OF CITATIONS
SEARCH DETAIL
...