Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Front Aging Neurosci ; 16: 1357695, 2024.
Article in English | MEDLINE | ID: mdl-38544780

ABSTRACT

Introduction: Associative memory is arguably the most basic memory function and therein constitutes the foundation of all episodic and semantic memory processes. At the same time, the decline of associative memory represents a core feature of age-related cognitive decline in both, healthy and pathological (i.e., dementia-related) aging. The neural mechanisms underlying age-related impairments in associative memory are still not fully understood, especially regarding incidental (i.e., non-intentional) learning. Methods: We investigated the impact of age on the incidental learning and memory retrieval of face-name combinations in a total sample of 46 young (N = 23; mean age = 23.39 years) and elderly (N = 22, mean age = 69.05 years) participants. More specifically, particular interest was placed in age-related changes in encoding/retrieval (E/R) flips, which denote a neural antagonism of opposed activation patterns in the same brain region during memory encoding and retrieval, which were assessed using fMRI. Results: According to our hypothesis, the results showed a significant age-related decline in the retrieval performance in the old group. Additionally, at the neural level, we discovered an abolished E/R flip in the right anterior insula and a joint but reduced E/R flip activation magnitude in the posterior middle cingulate cortex in older subjects. Discussion: In conclusion, the present findings suggest that the impaired neural modulation of the E/R flip in the right aIC might be a sensitive marker in the early detection of neural aging.

2.
Eur J Neurol ; 31(6): e16268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38465478

ABSTRACT

BACKGROUND AND PURPOSE: In amyotrophic lateral sclerosis (ALS), there is an unmet need for more precise patient characterization through quantitative, ideally operator-independent, assessments of disease extent and severity. Radially sampled averaged magnetization inversion recovery acquisitions (rAMIRA) magnetic resonance imaging enables gray matter (GM) and white matter (WM) area quantitation in the cervical and thoracic spinal cord (SC) with optimized contrast. We aimed to investigate rAMIRA-derived SC GM and SC WM areas and their association with clinical phenotype and disability in ALS. METHODS: A total of 36 patients with ALS (mean [SD] age 61.7 [12.6] years, 14 women) and 36 healthy, age- and sex-matched controls (HCs; mean [SD] age 63.1 [12.1] years, 14 women) underwent two-dimensional axial rAMIRA imaging at the inter-vertebral disc levels C2/3-C5/C6 and the lumbar enlargement level Tmax. ALS Functional Rating Scale-revised (ALSFRS-R) score, muscle strength, and sniff nasal inspiratory pressure (SNIP) were assessed. RESULTS: Compared to HCs, GM and WM areas were reduced in patients at all cervical levels (p < 0.0001). GM area (p = 0.0001), but not WM area, was reduced at Tmax. Patients with King's Stage 3 showed significant GM atrophy at all levels, while patients with King's Stage 1 showed significant GM atrophy selectively at Tmax. SC GM area was significantly associated with muscle force at corresponding myotomes. GM area at C3/C4 was associated with ALSFRS-R (p < 0.001) and SNIP (p = 0.0016). CONCLUSION: Patients with ALS assessed by rAMIRA imaging show significant cervical and thoracic SC GM and SC WM atrophy. SC GM area correlates with muscle strength and clinical disability. GM area reduction at Tmax may be an early disease sign. Longitudinal studies are warranted.


Subject(s)
Amyotrophic Lateral Sclerosis , Atrophy , Gray Matter , Magnetic Resonance Imaging , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/complications , Female , Middle Aged , Male , Gray Matter/diagnostic imaging , Gray Matter/pathology , Aged , Atrophy/pathology , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Thoracic Vertebrae/diagnostic imaging , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Cervical Vertebrae/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology
3.
Magn Reson Med ; 91(6): 2257-2265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411351

ABSTRACT

PURPOSE: To develop a novel signal representation for balanced steady state free precession (bSSFP) displaying its T2 independence on B1 and on magnetization transfer (MT) effects. METHODS: A signal model for bSSFP is developed that shows only an explicit dependence (up to a scaling factor) on E2 (and, therefore, T2) and a novel parameter c (with implicit dependence on the flip angle and E1). Moreover, it is shown that MT effects, entering the bSSFP signal via a binary spin bath model, can be captured by a redefinition of T1 and, therefore, leading to modification of E1, resulting in the same signal model. Various sets of phase-cycled bSSFP brain scans (different flip angles, different TR, different RF pulse durations, and different number of phase cycles) were recorded at 3 T. The parameters T2 (E2) and c were estimated using a variable projection (VARPRO) method and Monte-Carlo simulations were performed to assess T2 estimation precision. RESULTS: Initial experiments confirmed the expected independence of T2 on various protocol settings, such as TR, the flip angle, B1 field inhomogeneity, and the RF pulse duration. Any variation (within the explored range) appears to directly affect the estimation of the parameter c only-in agreement with theory. CONCLUSION: BSSFP theory predicts an extraordinary feature that all MT and B1-related variational aspects do not enter T2 estimation, making it a potentially robust methodology for T2 quantification, pending validation against existing standards.


Subject(s)
Brain , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Algorithms , Neuroimaging , Phantoms, Imaging
4.
Magn Reson Med ; 91(3): 1043-1056, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010053

ABSTRACT

PURPOSE: To investigate the prospects of a multigradient-echo (mGRE) acquisition for in vivo myelin water imaging at 0.55 T. METHODS: Scans were performed on the brain of four healthy volunteers at 0.55 and 3 T, using a 3D mGRE sequence. The myelin water fraction (MWF) was calculated for both field strengths using a nonnegative least squares (NNLS) algorithm, implemented in the qMRLab suite. The quality of these maps as well as single-voxel fits were compared visually for 0.55 and 3 T. RESULTS: The obtained MWF values at 0.55 T are consistent with previously reported ones at higher field strengths. The MWF maps are a considerable improvement over the ones at 3 T. Example fits show that 0.55 T data is better described by an exponential model than 3 T data, making the assumed multi-exponential model of the NNLS algorithm more accurate. CONCLUSION: This first assessment shows that mGRE myelin water imaging at 0.55 T is feasible and has the potential to yield better results than at higher fields.


Subject(s)
Myelin Sheath , Water , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping/methods
5.
Eur Radiol ; 34(3): 1680-1691, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37658894

ABSTRACT

OBJECTIVE: The potential of magnetization transfer imaging (MTI) and diffusion tensor imaging (DTI) for the detection and evolution of new multiple sclerosis (MS) lesions was analyzed. METHODS: Nineteen patients with MS obtained conventional MRI, MTI, and DTI examinations bimonthly for 12 months and again after 24 months at 1.5 T MRI. MTI was acquired with balanced steady-state free precession (bSSFP) in 10 min (1.3 mm3 isotropic resolution) yielding both magnetization transfer ratio (MTR) and quantitative magnetization transfer (qMT) parameters (pool size ratio (F), exchange rate (kf), and relaxation times (T1/T2)). DTI provided fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). RESULTS: At the time of their appearance on MRI, the 21 newly detected MS lesions showed significantly reduced MTR/F/kf and prolonged T1/T2 parameters, as well as significantly reduced FA and increased AD/MD/RD. Significant differences were already observed for MTR 4 months and for qMT parameters 2 months prior to lesions' detection on MRI. DTI did not show any significant pre-lesional differences. Slightly reversed trends were observed for most lesions up to 8 months after their detection for qMT and less pronounced for MTR and three diffusion parameters, while appearing unchanged on MRI. CONCLUSIONS: MTI provides more information than DTI in MS lesions and detects tissue changes 2 to 4 months prior to their appearance on MRI. After lesions' detection, qMT parameter changes promise to be more sensitive than MTR for the lesions' evolutional assessment. Overall, bSSFP-based MTI adumbrates to be more sensitive than MRI and DTI for the early detection and follow-up assessment of MS lesions. CLINICAL RELEVANCE STATEMENT: When additionally acquired in routine MRI, fast bSSFP-based MTI can complement the MRI/DTI longitudinal lesion assessment by detecting MS lesions 2-4 months earlier than with MRI, which could implicate earlier clinical decisions and better follow-up/treatment assessment in MS patients. KEY POINTS: • Magnetization transfer imaging provides more information than DTI in multiple sclerosis lesions and can detect tissue changes 2 to 4 months prior to their appearance on MRI. • After lesions' detection, quantitative magnetization transfer changes are more pronounced than magnetization transfer ratio changes and therefore promise to be more sensitive for the lesions' evolutional assessment. • Balanced steady-state free precession-based magnetization transfer imaging is more sensitive than MRI and DTI for the early detection and follow-up assessment of multiple sclerosis lesions.


Subject(s)
Diffusion Tensor Imaging , Multiple Sclerosis , Humans , Diffusion Tensor Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Anisotropy
6.
Magn Reson Med ; 91(4): 1464-1477, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38044680

ABSTRACT

PURPOSE: The reproducibility of scientific reports is crucial to advancing human knowledge. This paper is a summary of our experience in replicating a balanced SSFP half-radial dual-echo imaging technique (bSTAR) using open-source frameworks as a response to the 2023 ISMRM "repeat it with me" Challenge. METHODS: We replicated the bSTAR technique for thoracic imaging at 0.55T. The bSTAR pulse sequence is implemented in Pulseq, a vendor neutral open-source rapid sequence prototyping environment. Image reconstruction is performed with the open-source Berkeley Advanced Reconstruction Toolbox (BART). The replication of bSTAR, termed open-source bSTAR, is tested by replicating several figures from the published literature. Original bSTAR, using the pulse sequence and image reconstruction developed by the original authors, and open-source bSTAR, with pulse sequence and image reconstruction developed in this work, were performed in healthy volunteers. RESULTS: Both echo images obtained from open-source bSTAR contain no visible artifacts and show identical spatial resolution and image quality to those in the published literature. A direct head-to-head comparison between open-source bSTAR and original bSTAR on a healthy volunteer indicates that open-source bSTAR provides adequate SNR, spatial resolution, level of artifacts, and conspicuity of pulmonary vessels comparable to original bSTAR. CONCLUSION: We have successfully replicated bSTAR lung imaging at 0.55T using two open-source frameworks. Full replication of a research method solely relying on information on a research paper is unfortunately rare in research, but our success gives greater confidence that a research methodology can be indeed replicated as described.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Reproducibility of Results , Magnetic Resonance Imaging/methods
7.
Eur Radiol ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37982833

ABSTRACT

OBJECTIVES: In patients with congenital diaphragmatic hernia (CDH) the exact functional outcome of the affected lung side is still unknown, mainly due to the lack of spatially resolved diagnostic tools. Functional matrix-pencil decomposition (MP-) lung MRI fills this gap as it measures side-specific ventilation and perfusion. We aimed to assess the overall and side-specific pulmonary long-term outcomes of patients with CDH using lung function tests and MP-MRI. METHODS: Thirteen school-aged children with CDH (seven with small and six with large defect-sized CDH, defined as > 50% of the chest wall circumference being devoid of diaphragm tissue) and thirteen healthy matched controls underwent spirometry, multiple-breath washout, and MP-MRI. The main outcomes were forced expiratory volume in 1 second (FEV1), lung clearance index (LCI2.5), ventilation defect percentage (VDP), and perfusion defect percentage (QDP). RESULTS: Patients with a large CDH showed significantly reduced overall lung function compared to healthy controls (mean difference [95%-CIadjusted]: FEV1 (z-score) -4.26 [-5.61, -2.92], FVC (z-score) -3.97 [-5.68, -2.26], LCI2.5 (TO) 1.12 [0.47, 1.76], VDP (%) 8.59 [3.58, 13.60], QDP (%) 17.22 [13.16, 21.27]) and to patients with a small CDH. Side-specific examination by MP-MRI revealed particularly reduced ipsilateral ventilation and perfusion in patients with a large CDH (mean difference to contralateral side [95%-CIadjusted]: VDP (%) 14.80 [10.50, 19.00], QDP (%) 23.50 [1.75, 45.20]). CONCLUSIONS: Data indicate impaired overall lung function with particular limitation of the ipsilateral side in patients with a large CDH. MP-MRI is a promising tool to provide valuable side-specific functional information in the follow-up of patients with CDH. CLINICAL RELEVANCE STATEMENT: In patients with congenital diaphragmatic hernia, easily applicable MP-MRI allows specific examination of the lung side affected by the hernia and provides valuable information on ventilation and perfusion with implications for clinical practice, making it a promising tool for routine follow-up. KEY POINTS: • Functional matrix pencil decomposition (MP) MRI data from a small sample indicate reduced ipsilateral pulmonary ventilation and perfusion in children with large congenital diaphragmatic hernia (CDH). • Easily applicable pencil decomposition MRI provides valuable side-specific diagnostic information on lung ventilation and perfusion. This is a clear advantage over conventional lung function tests, helping to comprehensively follow up patients with congenital diaphragmatic hernia and monitor therapy effects.

8.
EBioMedicine ; 96: 104771, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37659283

ABSTRACT

BACKGROUND: Glucocorticoids (GCs) are widely applied anti-inflammatory drugs that are associated with adverse metabolic effects including insulin resistance and weight gain. Previous research indicates that GCs may negatively impact brown adipose tissue (BAT) activity in rodents and humans. METHODS: We performed a randomised, double-blinded cross-over trial in 16 healthy men (clinicaltrials.govNCT03269747). Participants received 40 mg of prednisone per day for one week or placebo. After a washout period of four weeks, participants crossed-over to the other treatment arm. Primary endpoint was the increase in resting energy expenditure (EE) in response to a mild-cold stimulus (cold-induced thermogenesis, CIT). Secondary outcomes comprised mean 18F-FDG uptake into supraclavicular BAT (SUVmean) as determined by FDG-PET/CT, volume of the BAT depot as well as fat content determined by MRI. The plasma metabolome and the transcriptome of supraclavicular BAT and of skeletal muscle biopsies after each treatment period were analysed. FINDINGS: Sixteen participants were recruited to the trial and completed it successfully per protocol. After prednisone treatment resting EE was higher both during warm and cold conditions. However, CIT was similar, 153 kcal/24 h (95% CI 40-266 kcal/24 h) after placebo and 186 kcal/24 h (95% CI 94-277 kcal/24 h, p = 0.38) after prednisone. SUVmean of BAT after cold exposure was not significantly affected by prednisone (3.36 g/ml, 95% CI 2.69-4.02 g/ml, vs 3.07 g/ml, 95% CI 2.52-3.62 g/ml, p = 0.28). Results of plasma metabolomics and BAT transcriptomics corroborated these findings. RNA sequencing of muscle biopsies revealed higher expression of genes involved in calcium cycling. No serious adverse events were reported and adverse events were evenly distributed between the two treatments. INTERPRETATION: Prednisone increased EE in healthy men possibly by altering skeletal muscle calcium cycling. Cold-induced BAT activity was not affected by GC treatment, which indicates that the unfavourable metabolic effects of GCs are independent from thermogenic adipocytes. FUNDING: Grants from Swiss National Science Foundation (PZ00P3_167823), Bangerter-Rhyner Foundation and from Nora van der Meeuwen-Häfliger Foundation to MJB. A fellowship-grant from the Swiss National Science Foundation (SNF211053) to WS. Grants from German Research Foundation (project number: 314061271-TRR 205) and Else Kröner-Fresenius (grant support 2012_A103 and 2015_A228) to MR.


Subject(s)
Adipose Tissue, Brown , Glucocorticoids , Male , Humans , Glucocorticoids/adverse effects , Adipose Tissue, Brown/metabolism , Fluorodeoxyglucose F18/metabolism , Fluorodeoxyglucose F18/pharmacology , Prednisone/adverse effects , Prednisone/metabolism , Cross-Over Studies , Calcium/metabolism , Positron Emission Tomography Computed Tomography , Energy Metabolism , Thermogenesis , Cold Temperature
9.
Magn Reson Med ; 90(5): 1949-1957, 2023 11.
Article in English | MEDLINE | ID: mdl-37317635

ABSTRACT

PURPOSE: To demonstrate the feasibility of high-resolution morphologic lung MRI at 0.55 T using a free-breathing balanced steady-state free precession half-radial dual-echo imaging technique (bSTAR). METHODS: Self-gated free-breathing bSTAR (TE1 /TE2 /TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR-scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k-space over multiple breathing cycles. WASP uses short-duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory-resolved images were reconstructed off-line using compressed sensing and retrospective self-gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings. RESULTS: The technique provided artifact-free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off-resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively. CONCLUSION: This study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.


Subject(s)
Magnetic Resonance Imaging , Respiration , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging
11.
Respir Med Res ; 83: 100993, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058881

ABSTRACT

Lung function testing and lung imaging are commonly used techniques to monitor respiratory diseases, such as cystic fibrosis (CF). The nitrogen (N2) multiple-breath washout technique (MBW) has been shown to detect ventilation inhomogeneity in CF, but the underlying pathophysiological processes that are altered are often unclear. Dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) could potentially be performed simultaneously with MBW because both techniques require breathing of 100% oxygen (O2) and may allow for visualisation of alterations underlying impaired MBW outcomes. However, simultaneous MBW and OE-MRI has never been assessed, potentially as it requires a magnetic resonance (MR) compatible MBW equipment. In this pilot study, we assessed whether MBW and OE-MRI can be performed simultaneously using a commercial MBW device that has been modified to be MR-compatible. We performed simultaneous measurements in five healthy volunteers aged 25-35 years. We obtained O2 and N2 concentrations from both techniques, and generated O2 wash-in time constant and N2 washout maps from OE-MRI data. We obtained good quality simultaneous measurements in two healthy volunteers due to technical challenges related to the MBW equipment and poor tolerance. Oxygen and N2 concentrations from both techniques, as well as O2 wash-in time constant maps and N2 washout maps could be obtained, suggesting that simultaneous measurements may have the potential to allow for comparison and visualization of regional differences in ventilation underlying impaired MBW outcomes. Simultaneous MBW and OE-MRI measurements can be performed with a modified MBW device and may help to understand MBW outcomes, but the measurements are challenging and have poor feasibility.


Subject(s)
Cystic Fibrosis , Oxygen , Humans , Adult , Pilot Projects , Breath Tests/methods , Lung/diagnostic imaging , Cystic Fibrosis/diagnostic imaging , Magnetic Resonance Imaging
12.
Z Med Phys ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37019739

ABSTRACT

PURPOSE: To provide a robust whole-brain quantitative magnetization transfer (MT) imaging method that is not limited by long acquisition times. METHODS: Two variants of a spiral 2D interleaved multi-slice spoiled gradient echo (SPGR) sequence are used for rapid quantitative MT imaging of the brain at 3 T. A dual flip angle, steady-state prepared, double-contrast method is used for combined B1 and-T1 mapping in combination with a single-contrast MT-prepared acquisition over a range of different saturation flip angles (50 deg to 850 deg) and offset frequencies (1 kHz and 10 kHz). Five sets (containing minimum 6 to maximum 18 scans) with different MT-weightings were acquired. In addition, main magnetic field inhomogeneities (ΔB0) were measured from two Cartesian low-resolution 2D SPGR scans with different echo times. Quantitative MT model parameters were derived from all sets using a two-pool continuous-wave model analysis, yielding the pool-size ratio, F, their exchange rate, kf, and their transverse relaxation time, T2r. RESULTS: Whole-brain quantitative MT imaging was feasible for all sets with total acquisition times ranging from 7:15 min down to 3:15 min. For accurate modeling, B1-correction was essential for all investigated sets, whereas ΔB0-correction showed limited bias for the observed maximum off-resonances at 3 T. CONCLUSION: The combination of rapid B1-T1 mapping and MT-weighted imaging using a 2D multi-slice spiral SPGR research sequence offers excellent prospects for rapid whole-brain quantitative MT imaging in the clinical setting.

13.
Mult Scler Relat Disord ; 71: 104545, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36758461

ABSTRACT

BACKGROUND: Although cervical spinal cord (cSC) area is an established biomarker in MS, there is currently a lack of longitudinal assessments of cSC gray and white matter areas. OBJECTIVE: We conducted an explorative analysis of longitudinal changes of cSC gray and white matter areas in MS patients. METHODS: 65 MS patients (33 relapsing-remitting; 20 secondary progressive and 12 primary progressive) and 20 healthy controls (HC) received clinical and upper cSC MRI assessments over 1.10±0.28 years. cSC compartments were quantified on MRI using the novel averaged magnetization inversion recovery acquisitions sequence (in-plane resolution=0.67 × 0.67mm2), and in-house developed post-processing methods. Patients were stratified regarding clinical progression. RESULTS: Patients with clinical progression showed faster reduction of cSC areas over time at the level of cSC enlargement (approximate vertebral level C4-C5) compared to stable patients (p<0.05). In addition, when compared to the rostral-cSC (approximate vertebral level C2-C3), a preferential reduction of cSC and white matter areas over time at the level of cSC enlargement (p<0.05 and p<0.01, respectively) was demonstrated only in patients with clinical progression, but not in stable MS patients and HC. Compared to HC, MS patients showed comparable changes over time in all cSC compartments. CONCLUSIONS: MS patients with clinical disease progression demonstrate subtle signs of a more pronounced tissue loss at the level of cSC enlargement. Future studies should consider larger sample sizes and more extended observation periods.


Subject(s)
Cervical Cord , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Magnetic Resonance Imaging/methods , Disease Progression , Atrophy/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology
14.
J Cyst Fibros ; 22(4): 615-622, 2023 07.
Article in English | MEDLINE | ID: mdl-36635199

ABSTRACT

BACKGROUND: With improvement in supportive therapies and the introduction of cystic fibrosis transmembrane conductance regulator (CFTR)-modulator treatment in patients with cystic fibrosis (CF), milder disease courses are expected. Therefore, sensitive parameters are needed to monitor disease course and effects of CFTR-modulators. Functional lung MRI using matrix-pencil decomposition (MP-MRI) is a promising tool for assessing ventilation and perfusion quantitatively. This study aimed to assess the treatment effect of elexacaftor/tezacaftor/ivacaftor combination regimen (ELX/TEZ/IVA) on measures of structural and functional lung abnormalities. METHODS: 24 children with CF underwent lung function tests (multiple breath washout, spirometry), functional and structural MRI twice (one year apart) before and once after at least two weeks (mean 4.7 ± 2.6 months) on ELX/TEZ/IVA. Main outcomes were changes (Δ) upon ELX/TEZ/IVA in lung function, defect percentage of ventilation (VDP) and perfusion (QDP), defect distribution index of ventilation and perfusion (DDIV, DDIQ), and Eichinger score. Statistical analyses were performed using paired t-tests and multilevel regression models with bootstrapping. RESULTS: We observed a significant improvement in lung function, structural and functional MRI parameters upon ELX/TEZ/IVA treatment (mean; 95%-CI): ΔLCI2.5 (TO) -0.84 (-1.62 to -0.06); ΔFEV1 (z-score) 1.05 (0.56 to 1.55); ΔVDP (% of impairment) -6.00 (-8.44 to -3.55); ΔQDP (% of impairment) -3.90 (-5.90 to -1.90); ΔDDIV -1.38 (-2.22 to -0.53); ΔDDIQ -0.31 (-0.73 to 0.12); ΔEichinger score -3.89 (-5.05 to -2.72). CONCLUSIONS: Besides lung function tests, functional and structural MRI is a suitable tool to monitor treatment response of ELX/TEZ/IVA therapy, and seems promising as outcome marker in the future.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Child , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/diagnosis , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Respiratory Function Tests , Spirometry , Magnetic Resonance Imaging , Lung/diagnostic imaging , Aminophenols , Benzodioxoles , Mutation , Chloride Channel Agonists
15.
Mult Scler ; 29(6): 702-718, 2023 05.
Article in English | MEDLINE | ID: mdl-36550626

ABSTRACT

BACKGROUND: Spinal cord (SC) gray and white matter pathology plays a central role in multiple sclerosis (MS). OBJECTIVE: We aimed to investigate the extent, pattern, and clinical relevance of SC gray and white matter atrophy in vivo. METHODS: 39 relapsing-remitting patients (RRMS), 40 progressive MS patients (PMS), and 24 healthy controls (HC) were imaged at 3T using the averaged magnetization inversion recovery acquisitions sequence. Total and lesional cervical gray and white matter, and posterior (SCPH) and anterior horn (SCAH) areas were automatically quantified. Clinical assessment included the expanded disability status scale, timed 25-foot walk test, nine-hole peg test, and the 12-item MS walking scale. RESULTS: PMS patients had significantly reduced cervical SCAH - but not SCPH - areas compared with HC and RRMS (both p < 0.001). In RRMS and PMS, the cervical SCAH areas increased significantly less in the region of cervical SC enlargement compared with HC (all p < 0.001). This reduction was more pronounced in PMS compared with RRMS (both p < 0.001). In PMS, a lower cervical SCAH area was the most important magnetic resonance imaging (MRI)-variable for higher disability scores. CONCLUSION: MS patients show clinically relevant cervical SCAH atrophy, which is more pronounced in PMS and at the level of cervical SC enlargement.


Subject(s)
Cervical Cord , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Multiple Sclerosis/pathology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Gray Matter/pathology , Magnetic Resonance Imaging , Atrophy/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology
16.
Z Med Phys ; 33(2): 220-229, 2023 May.
Article in English | MEDLINE | ID: mdl-35190223

ABSTRACT

PURPOSE: To demonstrate free-breathing thoracic MRI with a minimal-TR balanced steady-state free precession (bSSFP) technique using wobbling Archimedean spiral pole (WASP) trajectories. METHODS: Phantom and free-breathing in vivo chest imaging in healthy volunteers was performed at 1.5T with a half-radial, dual-echo, bSSFP sequence, termed bSTAR. For maximum sampling efficiency, a single analog-to-digital converter window along the full bipolar readout was used. To ensure a homogeneous coverage of the k-space over multiple breathing cycles, radial k-space sampling followed short-duration Archimedean spiral interleaves that were randomly titled by a small polar angle and rotated by a golden angle about the polar axis; depticting a wobbling Archimedean spiral pole (WASP) trajectory. In phantom and in vivo experiments, WASP trajectories were compared to spiral phyllotaxis sampling in terms of eddy currents and were used to generate in vivo thorax images at different respiratory phases. RESULTS: WASP trajectories provided artifact-free bSTAR imaging in both phantom and in vivo and respiratory self-gated reconstruction was successfully performed in all subjects. The amount of the acquired data allowed the reconstruction of 10 volumes at different respiratory levels with isotropic resolution of 1.77mm from a scan of 5.5minutes (using a TR of 1.32ms), and one high-resolution 1.16mm end-expiratory volume from a scan of 4.7minutes (using a TR of 1.42ms). The very short TR of bSTAR mitigated off-resonance artifacts despite the large field-of-view. CONCLUSION: We have demonstrated the feasibility of high-resolution free-breathing thoracic imaging with bSTAR using the wobbling Archimedean spiral pole in healthy subjects at 1.5T.


Subject(s)
Magnetic Resonance Imaging , Respiration , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Thorax/diagnostic imaging , Artifacts
17.
BMJ Nutr Prev Health ; 6(2): 264-272, 2023.
Article in English | MEDLINE | ID: mdl-38618550

ABSTRACT

Introduction: Previous studies in humans and rats suggest that erythritol might positively affect vascular function, xylitol decrease visceral fat mass and both substances improve glycaemic control. The objective of this study was to investigate the impact of a 5-week intake of erythritol and xylitol on vascular function, abdominal fat and blood lipids, glucose tolerance, uric acid, hepatic enzymes, creatinine, gastrointestinal tolerance and dietary patterns in humans with obesity. Methods: Forty-two participants were randomised to consume either 36 g erythritol, 24 g xylitol, or no substance daily for 5 weeks. Before and after the intervention, arterial stiffness (pulse wave velocity, arteriolar-to-venular diameter ratio), abdominal fat (liver volume, liver fat percentage, visceral and subcutaneous adipose tissue, blood lipids), glucose tolerance (glucose and insulin concentrations), uric acid, hepatic enzymes, creatinine, gastrointestinal tolerance and dietary patterns were assessed. Data were analysed by linear mixed effect model. Results: The 5-week intake of erythritol and xylitol showed no statistically significant effect on vascular function. Neither the time nor the treatment effects were significantly different for pulse wave velocity (time effect: p=0.079, Cohen's D (95% CI) -0.14 (-0.54-0.25); treatment effect: p=0.792, Cohen's D (95% CI) control versus xylitol: -0.11 (-0.61-0.35), control versus erythritol: 0.05 (0.44-0.54), erythritol versus xylitol: 0.07 (-0.41-0.54)). There was no statistically significant effect on abdominal fat, glucose tolerance, uric acid, hepatic enzymes and creatinine. Gastrointestinal tolerance was good except for a few diarrhoea-related symptoms. Participants of all groups reduced their consumption of sweetened beverages and sweets compared with preintervention. Conclusions: The 5-week intake of erythritol and xylitol showed no statistically significant effects on vascular function, abdominal fat, or glucose tolerance in people with obesity. Clinical trial registration: NCT02821923.

18.
Radiology ; 304(1): 195-204, 2022 07.
Article in English | MEDLINE | ID: mdl-35380498

ABSTRACT

Background Evidence regarding short-term effects of electronic nicotine delivery systems (ENDS) and tobacco smoke on lung ventilation and perfusion is limited. Purpose To examine the immediate effect of ENDS exposure and tobacco smoke on lung ventilation and perfusion by functional MRI and lung function tests. Materials and Methods This prospective observational pilot study was conducted from November 2019 to September 2021 (substudy of randomized controlled trial NCT03589989). Included were 44 healthy adult participants (10 control participants, nine former tobacco smokers, 13 ENDS users, and 12 active tobacco smokers; mean age, 41 years ± 12 [SD]; 28 men) who underwent noncontrast-enhanced matrix pencil MRI and lung function tests before and immediately after the exposure to ENDS products or tobacco smoke. Baseline measurements were acquired after 2 hours of substance abstinence. Postexposure measurements were performed immediately after the exposure. MRI showed semiquantitative measured impairment of lung perfusion (RQ) and fractional ventilation (RFV) impairment as percentages of affected lung volume. Lung clearance index (LCI) was assessed by nitrogen multiple-breath washout to capture ventilation inhomogeneity and spirometry to assess airflow limitation. Absolute differences were calculated with paired Wilcoxon signed-rank test and differences between groups with unpaired Mann-Whitney test. Healthy control participants underwent two consecutive MRI measurements to assess MRI reproducibility. Results MRI was performed and lung function measurement was acquired in tobacco smokers and ENDS users before and after exposure. MRI showed a decrease of perfusion after exposure (RQ, 8.6% [IQR, 7.2%-10.0%] to 9.1% [IQR, 7.8%-10.7%]; P = .03) and no systematic change in RFV (P = .31) among tobacco smokers. Perfusion increased in participants who used ENDS after exposure (RQ, 9.7% [IQR, 7.1%-10.9%] to 9.0% [IQR, 6.9%-10.0%]; P = .01). RFV did not change (P = .38). Only in tobacco smokers was LCI elevated after smoking (P = .02). Spirometry indexes did not change in any participants. Conclusion MRI showed a decrease of lung perfusion after exposure to tobacco smoke and an increase of lung perfusion after use of electronic nicotine delivery systems. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Kligerman in this issue.


Subject(s)
Tobacco Smoke Pollution , Vaping , Adult , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Perfusion , Prospective Studies , Reproducibility of Results , Smoking/adverse effects , Vaping/adverse effects
19.
Magn Reson Med ; 88(1): 391-405, 2022 07.
Article in English | MEDLINE | ID: mdl-35348244

ABSTRACT

PURPOSE: To introduce a widely applicable workflow for pulmonary lobe segmentation of MR images using a recurrent neural network (RNN) trained with chest CT datasets. The feasibility is demonstrated for 2D coronal ultrafast balanced SSFP (ufSSFP) MRI. METHODS: Lung lobes of 250 publicly accessible CT datasets of adults were segmented with an open-source CT-specific algorithm. To match 2D ufSSFP MRI data of pediatric patients, both CT data and segmentations were translated into pseudo-MR images that were masked to suppress anatomy outside the lung. Network-1 was trained with pseudo-MR images and lobe segmentations and then applied to 1000 masked ufSSFP images to predict lobe segmentations. These outputs were directly used as targets to train Network-2 and Network-3 with non-masked ufSSFP data as inputs, as well as an additional whole-lung mask as input for Network-2. Network predictions were compared to reference manual lobe segmentations of ufSSFP data in 20 pediatric cystic fibrosis patients. Manual lobe segmentations were performed by splitting available whole-lung segmentations into lobes. RESULTS: Network-1 was able to segment the lobes of ufSSFP images, and Network-2 and Network-3 further increased segmentation accuracy and robustness. The average all-lobe Dice similarity coefficients were 95.0 ± 2.8 (mean ± pooled SD [%]) and 96.4 ± 2.5, 93.0 ± 2.0; and the average median Hausdorff distances were 6.1 ± 0.9 (mean ± SD [mm]), 5.3 ± 1.1, 7.1 ± 1.3 for Network-1, Network-2, and Network-3, respectively. CONCLUSION: Recurrent neural network lung lobe segmentation of 2D ufSSFP imaging is feasible, in good agreement with manual segmentations. The proposed workflow might provide access to automated lobe segmentations for various lung MRI examinations and quantitative analyses.


Subject(s)
Cystic Fibrosis , Adult , Child , Cystic Fibrosis/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Tomography, X-Ray Computed
20.
Med Phys ; 49(5): 2890-2903, 2022 May.
Article in English | MEDLINE | ID: mdl-35239984

ABSTRACT

PURPOSE: Respiratory motion is one of the major challenges in radiotherapy. In this work, a comprehensive and clinically plausible set of 4D numerical phantoms, together with their corresponding "ground truths," have been developed and validated for 4D radiotherapy applications. METHODS: The phantoms are based on CTs providing density information and motion from multi-breathing-cycle 4D Magnetic Resonance imagings (MRIs). Deformable image registration (DIR) has been utilized to extract motion fields from 4DMRIs and to establish inter-subject correspondence by registering binary lung masks between Computer Tomography (CT) and MRI. The established correspondence is then used to warp the CT according to the 4DMRI motion. The resulting synthetic 4DCTs are called 4DCT(MRI)s. Validation of the 4DCT(MRI) workflow was conducted by directly comparing conventional 4DCTs to derived synthetic 4D images using the motion of the 4DCTs themselves (referred to as 4DCT(CT)s). Digitally reconstructed radiographs (DRRs) as well as 4D pencil beam scanned (PBS) proton dose calculations were used for validation. RESULTS: Based on the CT image appearance of 13 lung cancer patients and deformable motion of five volunteer 4DMRIs, synthetic 4DCT(MRI)s with a total of 871 different breathing cycles have been generated. The 4DCT(MRI)s exhibit an average superior-inferior tumor motion amplitude of 7 ± 5 mm (min: 0.5 mm, max: 22.7 mm). The relative change of the DRR image intensities of the conventional 4DCTs and the corresponding synthetic 4DCT(CT)s inside the body is smaller than 5% for at least 81% of the pixels for all studied cases. Comparison of 4D dose distributions calculated on 4DCTs and the synthetic 4DCT(CT)s using the same motion achieved similar dose distributions with an average 2%/2 mm gamma pass rate of 90.8% (min: 77.8%, max: 97.2%). CONCLUSION: We developed a series of numerical 4D lung phantoms based on real imaging and motion data, which give realistic representations of both anatomy and motion scenarios and the accessible "ground truth" deformation vector fields of each 4DCT(MRI). The open-source code and motion data allow foreseen users to generate further 4D data by themselves. These numeric 4D phantoms can be used for the development of new 4D treatment strategies, 4D dose calculations, DIR algorithm validations, as well as simulations of motion mitigation and different online image guidance techniques for both proton and photon radiation therapy.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms , Four-Dimensional Computed Tomography/methods , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Protons , Respiration , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...