Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 36 Suppl 2: T44-53, 2007.
Article in English | MEDLINE | ID: mdl-17499169

ABSTRACT

The posterior inferior frontal gyrus (pIFG) and anterior inferior parietal lobule (aIPL) form the core regions of the human "mirror neuron system" that matches an observed movement onto its internal motor representation. We used event-related functional MRI to examine whether simple intransitive finger movements evoke "mirror activity" in the pIFG and aIPL. In separate sessions, participants either merely observed visuospatial stimuli or responded to them as quickly as possible with a spatially compatible finger movement. A picture of a relaxed hand with static dots on the tip of the index and little finger was continuously presented as high-level baseline. Four types of stimuli were presented in a pseudorandom order: a color change of a dot, a moving finger, a moving dot, or a simultaneous finger-dot movement. Dot movements were spatially and kinematically matched to finger movements. Participants were faster at imitating a finger movement than performing the same movement in response to a moving dot or a color change of a dot. Though imitative responses were facilitated, fMRI revealed no additional "mirror activity" in the pIFG and aIPL during the observation or imitation of finger movements as opposed to observing or responding to a moving dot. Mere observation of a finger movement alone failed to induce significant activation of the pIFG and aIPL. The lack of a signature of "mirror neuron activity" in the inferior frontoparietal cortex is presumably due to specific features of the task which may have favored stimulus-response mapping based on common spatial coding. We propose that the responsiveness of human frontoparietal mirror neuron areas to simple intransitive movements critically depends on the experimental context.


Subject(s)
Brain Mapping , Frontal Lobe/physiology , Imitative Behavior/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Adult , Female , Fingers/physiology , Humans , Magnetic Resonance Imaging , Male , Neurons/physiology , Reaction Time
2.
Exp Brain Res ; 177(2): 255-65, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16944109

ABSTRACT

Behavioural advantages for imitation of human movements over movements instructed by other visual stimuli are attributed to an 'action observation-execution matching' (AOEM) mechanism. Here, we demonstrate that priming/exogenous cueing with a videotaped finger movement stimulus (S1) produces specific congruency effects in reaction times (RTs) of imitative responses to a target movement (S2) at defined stimulus onset asynchronies (SOAs). When contrasted with a moving object at an SOA of 533 ms, only a human movement is capable of inducing an effect reminiscent of 'inhibition of return' (IOR), i.e. a significant advantage for imitation of a subsequent incongruent as compared to a congruent movement. When responses are primed by a finger movement at SOAs of 533 and 1,200 ms, inhibition of congruent or facilitation of incongruent responses, respectively, is stronger as compared to priming by a moving object. This pattern does not depend on whether S2 presents a finger movement or a moving object, thus effects cannot be attributed to visual similarity between S1 and S2. We propose that, whereas both priming by a finger movement and a moving object induces processes of spatial orienting, solely observation of a human movement activates AOEM. Thus, S1 immediately elicits an imitative response tendency. As an overt imitation of S1 is inadequate in the present setting, the response is inhibited which, in turn, modulates congruency effects.


Subject(s)
Fingers/physiology , Imitative Behavior/physiology , Learning/physiology , Movement/physiology , Reaction Time/physiology , Visual Perception/physiology , Adult , Cognition/physiology , Cues , Female , Fingers/innervation , Humans , Male , Neural Inhibition/physiology , Neuropsychological Tests , Orientation/physiology , Photic Stimulation , Space Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...