Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 363(3): 348-357, 2017 12.
Article in English | MEDLINE | ID: mdl-28904003

ABSTRACT

This article describes the preclinical pharmacology and pharmacokinetics (PK) of hexadecyl-treprostinil (C16TR), a prodrug of treprostinil (TRE), formulated in a lipid nanoparticle (LNP) for inhalation as a pulmonary vasodilator. C16TR showed no activity (>10 µM) in receptor binding and enzyme inhibition assays, including binding to prostaglandin E2 receptor 2, prostaglandin D2 receptor 1, prostaglandin I2 receptor, and prostaglandin E2 receptor 4; TRE potently bound to each of these prostanoid receptors. C16TR had no effect (up to 200 nM) on platelet aggregation induced by ADP in rat blood. In hypoxia-challenged rats, inhaled C16TR-LNP produced dose-dependent (0.06-6 µg/kg), sustained pulmonary vasodilation over 3 hours; inhaled TRE (6 µg/kg) was active at earlier times but lost its effect by 3 hours. Single- and multiple-dose PK studies of inhaled C16TR-LNP in rats showed proportionate dose-dependent increases in TRE Cmax and area under the curve (AUC) for both plasma and lung; similar results were observed for dog plasma levels in single-dose PK studies. In both species, inhaled C16TR-LNP yielded prolonged plasma TRE levels and a lower plasma TRE Cmax compared with inhaled TRE. Inhaled C16TR-LNP was well tolerated in rats and dogs; TRE-related side effects included cough, respiratory tract irritation, and emesis and were seen only after high inhaled doses of C16TR-LNP in dogs. In guinea pigs, inhaled TRE (30 µg/ml) consistently produced cough, but C16TR-LNP (30 µg/ml) elicited no effect. These results demonstrate that C16TR-LNP provides long-acting pulmonary vasodilation, is well tolerated in animal studies, and may necessitate less frequent dosing than inhaled TRE with possibly fewer side effects.


Subject(s)
Antihypertensive Agents/therapeutic use , Drug Delivery Systems , Epoprostenol/analogs & derivatives , Hypertension, Pulmonary/drug therapy , Prodrugs/administration & dosage , Vasodilator Agents/administration & dosage , Administration, Inhalation , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/pharmacology , Dogs , Dose-Response Relationship, Drug , Drug Compounding , Drug Delivery Systems/adverse effects , Drug Evaluation, Preclinical , Epoprostenol/administration & dosage , Epoprostenol/metabolism , Epoprostenol/pharmacokinetics , Epoprostenol/pharmacology , Epoprostenol/therapeutic use , Excipients/administration & dosage , Excipients/adverse effects , Excipients/chemistry , Female , Guinea Pigs , Humans , Hypertension, Pulmonary/blood , Lung/blood supply , Lung/drug effects , Lung/metabolism , Male , Nanoparticles/administration & dosage , Nanoparticles/adverse effects , Nanoparticles/chemistry , Phosphatidylethanolamines/administration & dosage , Phosphatidylethanolamines/adverse effects , Phosphatidylethanolamines/chemistry , Platelet Aggregation/drug effects , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Polyethylene Glycols/chemistry , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/therapeutic use , Rats, Sprague-Dawley , Squalene/administration & dosage , Squalene/adverse effects , Squalene/analogs & derivatives , Squalene/chemistry , Vasodilation/drug effects , Vasodilator Agents/pharmacokinetics , Vasodilator Agents/pharmacology , Vasodilator Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...