Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 3282, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115922

ABSTRACT

In the late 1990s, fusion scientists at the Japanese tokamak JT-60U discovered abrupt large-amplitude events during beam-driven deuterium plasma experiments. A large spike in the magnetic fluctuation signal followed by a drop in the neutron emission rate indicates that energetic ions abruptly migrate out of the plasma core during an intense burst of Alfvén waves that lasts only 0.3 ms. With continued beam injection, the energetic ion population recovers until the next event occurs 40-60 ms later. Here we present results from simulations that successfully reproduce multiple migration cycles and report numerical and experimental evidence for the multi-mode nature of these intermittent phenomena. Moreover, we elucidate the role of collisional slow-down and show that the large-amplitude Alfvénic fluctuations can drive magnetic reconnection and induce macroscopic magnetic islands. In this way, our simulations allow us to gradually unravel the underlying physical processes and develop predictive capabilities.

2.
Phys Rev Lett ; 114(1): 015002, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25615474

ABSTRACT

When the plasma beta (ratio of thermal to magnetic pressure) in the core of a tokamak is raised to values of several percent, as required for a thermonuclear fusion reactor, continuous spectra of long-wavelength slow magnetosonic waves enter the frequency band occupied by continuous spectra of shear Alfvén waves. It is found that these two branches can couple strongly, so that Alfvén modes that are resonantly driven by suprathermal ions transfer some of their energy to sound waves. Since sound waves are heavily damped by thermal ion Landau resonances, these results reveal a new energy channel that contributes to the damping of Alfvénic instabilities and the noncollisional heating of bulk ions, with potentially important consequences for confinement and fusion performance.

3.
Phys Rev Lett ; 94(6): 065001, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15783736

ABSTRACT

In magnetic configurations with two or three q=1 (with q being the safety factor) resonant surfaces in a tokamak plasma, resistive magnetohydrodynamic modes with poloidal mode numbers m much larger than 1 are found to be linearly unstable. It is found that these high-m double or triple tearing modes significantly enhance through nonlinear interactions the growth of the m=1 mode. This may account for the sudden onset of the internal resistive kink, i.e., the fast sawtooth trigger. Based on the subsequent reconnection dynamics that can proceed without formation of the m=1 islands, it is proposed that high-m triple tearing modes are a possible mechanism for precursor-free partial collapses during sawtooth oscillations.

SELECTION OF CITATIONS
SEARCH DETAIL
...