Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37720264

ABSTRACT

We demonstrate Josephson arbitrary waveform synthesizers (JAWS) with increased operating temperature range for temperatures below 4 K. These JAWS synthesizers were fabricated with externally-shunted Nb/a-Si/Nb junctions whose critical current exhibits improved temperature stability compared to the self-shunted Nb/Nb0.15Si0.85/Nb junctions typically used. Vertical stud resistors made of 230 nm of PdAu were developed to provide the milliohm shunt resistance required for junction overdamping while maintaining a small footprint suitable for high-density series arrays embedded in a coplanar waveguide. We evaluated the performance of these resistors from 3.8 K down to 20 mK. We designed, fabricated and tested a JAWS circuit with 4650 externally shunted Nb/a-Si/Nb JJs with a critical current density (Jc) of 0.12 mA∕µm2 and critical current (Ic) of 3 mA. This circuit was designed to be mounted to the 3 K stage of a dilution refrigerator and used to control and calibrate a qubit mounted at the 10 mK stage. To increase the circuit density of the JAWS circuits we made arrays of two-junction vertical stacks. Current-voltage (I-V) curves of this JAWS circuit with stacked junctions under microwave excitation show Shapiro steps with quantum-locking ranges similar to those of JAWS circuits used for qubit control.

SELECTION OF CITATIONS
SEARCH DETAIL
...