Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(17): 176602, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35570449

ABSTRACT

Topological materials with broken inversion symmetry can give rise to nonreciprocal responses, such as the current rectification controlled by magnetic fields via magnetochiral anisotropy. Bulk nonreciprocal responses usually stem from relativistic corrections and are always very small. Here we report our discovery that ZrTe_{5} crystals in proximity to a topological quantum phase transition present gigantic magnetochiral anisotropy, which is the largest ever observed to date. We argue that a very low carrier density, inhomogeneities, and a torus-shaped Fermi surface induced by breaking of inversion symmetry in a Dirac material are central to explain this extraordinary property.

2.
Sci Rep ; 9(1): 4391, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30867516

ABSTRACT

LiCuVO4 is a model system of a 1D spin-1/2 chain that enters a planar spin-spiral ground state below its Néel temperature of 2.4 K due to competing nearest and next nearest neighbor interactions. The spin-spiral state is multiferroic with an electric polarization along the a axis which has been proposed to be caused purely by the spin supercurrent mechanism. With external magnetic fields in c direction TN can be suppressed down to 0 K at 7.4 T. Here we report dynamical measurements of the polarization from P(E)-hysteresis loops, magnetic field dependent pyro-current and non-linear dielectric spectroscopy as well as thermal expansion and magnetostriction measurements at very low temperatures. The multiferroic transition is accompanied by strong anomalies in the thermal expansion and magnetostriction coefficients and we find slow switching times of electric domain reversal. Both observations suggest a sizable magnetoelastic coupling in LiCuVO4. By analyzing the non-linear polarization dynamics we derive domain sizes in the nm range that are probably caused by Li defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...