Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998239

ABSTRACT

This paper presents an evaluation of the morphology of fertilizer-grade and prill-grade ammonium nitrate(V). All samples were analyzed using X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and tomography techniques. The XRD results revealed that despite various provenances, all samples exhibited similar Pmmm symmetry and diffraction patterns. SEM images indicated that prill ammonium nitrate(V) showed a more complex external and internal crystal structure than fertilizer-grade counterparts. Furthermore, tomography analysis revealed that each prill ammonium nitrate(V) sample demonstrated distinct porosity characteristics, including varying pore sizes and distribution patterns. Both methods confirmed that fertilizer-grade ammonium nitrate(V) in the cross-section had a pumice structure, and porous prill ammonium nitrate(V) had a rather complex structure, with a central cavity observed only in the case of Sample 4. The appearance of a central cavity can be explained by the different conditions or manufacturing processes of porous prill ammonium nitrate(V). Moreover, the fertilizer-type ammonium nitrate(V) exhibited the lowest surface-to-volume ratio of ca. 21% compared to the porous-type ammonium nitrate(V). This, together with the lowest surface area of ca. 116 mm2, confirmed the lowest absorption capacity of the fertilizer-grade ammonium nitrate(V) disclosed by the ammonium nitrate(V) producer.

2.
Molecules ; 29(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999136

ABSTRACT

Regarding the current state of the art on the utilization of zeolites in industry, the application of zeolites as an additive to eco-friendly energetic materials indicates the innovative character of the present research. One of the most commonly used energetic materials in the mining industry (engineering works) is ANFO (ammonium nitrate fuel oil), due to its easy and cheap production procedure as well as its good energetic properties and vast possibilities for modification. In the present research, we investigated Cu-zeolite with a faujasite structure (Cu-FAU) as a modifier of ANFO-based energetic materials. Analysis of the results obtained from thermodynamic calculations of energetic performance led to the conclusion that the application of Cu-faujasite as an additive to ANFO resulted in a relevant reduction in the total emission of post-decomposition fumes, with simultaneous enhancement of the energetic properties of the energetic material, which corresponded with the changes in the status of the surface and the reduced thermal effect accompanying the ammonium nitrate's decomposition. From analysis of both the energetic performance and fumes, it may be concluded that our eco-friendly and enhanced energetic material can be used as a low-emission source of energy for the quarrying of raw materials.

3.
Materials (Basel) ; 15(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36079238

ABSTRACT

In the presented research, we investigated Ammonium Nitrate Fuel Oil (ANFO), with the addition of variously modified zeolite Y as an attractive explosive. Analysis of both blasting tests and thermodynamic models of blasting properties led to the conclusion that the addition of zeolite Y enhanced the detonation properties of such prepared ANFO via the growth of the detonation pressure, temperature, compression energy, and heat of the explosion. Generally, the modification of ANFO with variously prepared zeolite Y also reduced the volume of (COx + NOx) post-blast fumes. Furthermore, it was found that the ANFO's velocity of detonation (VOD) could be controlled by the choice of the way of zeolite Y modification. Namely, for zeolite Y without Mg, as well as Mg-Y prepared via the impregnation method, the VOD rose. The opposite effect was observed when ANFO was modified with Mg-Y, obtained from the deposition of Mg over zeolite Y via the ultrasonic-assisted procedure.

SELECTION OF CITATIONS
SEARCH DETAIL
...