Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 9(12): 1686-1695, 2019 12.
Article in English | MEDLINE | ID: mdl-31575540

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide with no clinically confirmed oncogenic driver. Although preclinical studies implicate the FGF19 receptor FGFR4 in hepatocarcinogenesis, the dependence of human cancer on FGFR4 has not been demonstrated. Fisogatinib (BLU-554) is a potent and selective inhibitor of FGFR4 and demonstrates clinical benefit and tumor regression in patients with HCC with aberrant FGF19 expression. Mutations were identified in the gatekeeper and hinge-1 residues in the kinase domain of FGFR4 upon disease progression in 2 patients treated with fisogatinib, which were confirmed to mediate resistance in vitro and in vivo. A gatekeeper-agnostic, pan-FGFR inhibitor decreased HCC xenograft growth in the presence of these mutations, demonstrating continued FGF19-FGFR4 pathway dependence. These results validate FGFR4 as an oncogenic driver and warrant further therapeutic targeting of this kinase in the clinic. SIGNIFICANCE: Our study is the first to demonstrate on-target FGFR4 kinase domain mutations as a mechanism of acquired clinical resistance to targeted therapy. This further establishes FGF19-FGFR4 pathway activation as an oncogenic driver. These findings support further investigation of fisogatinib in HCC and inform the profile of potential next-generation inhibitors.See related commentary by Subbiah and Pal, p. 1646.This article is highlighted in the In This Issue feature, p. 1631.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Drug Resistance, Neoplasm , Liver Neoplasms/diagnostic imaging , Pyrans/pharmacology , Quinazolines/pharmacology , Receptor, Fibroblast Growth Factor, Type 4/genetics , Aged, 80 and over , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Female , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Middle Aged , Models, Molecular , Mutation , Neoplasm Transplantation , Protein Domains , Receptor, Fibroblast Growth Factor, Type 4/chemistry , Receptor, Fibroblast Growth Factor, Type 4/metabolism
2.
Nat Microbiol ; 2: 17104, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28665414

ABSTRACT

Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of ß-lactamases, enzymes that inactivate ß-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new ß-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii. This report describes the rational design and characterization of expanded-spectrum serine ß-lactamase inhibitors that potently inhibit clinically relevant class A, C and D ß-lactamases and penicillin-binding proteins, resulting in intrinsic antibacterial activity against Enterobacteriaceae and restoration of ß-lactam activity in a broad range of MDR Gram-negative pathogens. One of the most promising combinations is sulbactam-ETX2514, whose potent antibacterial activity, in vivo efficacy against MDR A. baumannii infections and promising preclinical safety demonstrate its potential to address this significant unmet medical need.


Subject(s)
Acinetobacter baumannii/drug effects , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/pharmacology , Gram-Negative Bacteria/drug effects , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Animals , Azabicyclo Compounds/therapeutic use , Azabicyclo Compounds/toxicity , Carbapenems/pharmacology , Dogs , Drug Design , Drug Evaluation, Preclinical , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae/drug effects , Gram-Negative Bacterial Infections/drug therapy , Humans , Mice , Models, Molecular , Penicillin-Binding Proteins/antagonists & inhibitors , Rats , Sulbactam/chemistry , Sulbactam/pharmacology , beta-Lactamase Inhibitors/therapeutic use , beta-Lactamase Inhibitors/toxicity , beta-Lactamases/metabolism , beta-Lactams/pharmacology
3.
Cancer Discov ; 5(4): 424-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25776529

ABSTRACT

UNLABELLED: Aberrant signaling through the fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR 4) signaling complex has been shown to cause hepatocellular carcinoma (HCC) in mice and has been implicated to play a similar role in humans. We have developed BLU9931, a potent and irreversible small-molecule inhibitor of FGFR4, as a targeted therapy to treat patients with HCC whose tumors have an activated FGFR4 signaling pathway. BLU9931 is exquisitely selective for FGFR4 versus other FGFR family members and all other kinases. BLU9931 shows remarkable antitumor activity in mice bearing an HCC tumor xenograft that overexpresses FGF19 due to amplification as well as a liver tumor xenograft that overexpresses FGF19 mRNA but lacks FGF19 amplification. Approximately one third of patients with HCC whose tumors express FGF19 together with FGFR4 and its coreceptor klotho ß (KLB) could potentially respond to treatment with an FGFR4 inhibitor. These findings are the first demonstration of a therapeutic strategy that targets a subset of patients with HCC. SIGNIFICANCE: This article documents the discovery of BLU9931, a novel irreversible kinase inhibitor that specifically targets FGFR4 while sparing all other FGFR paralogs and demonstrates exquisite kinome selectivity. BLU9931 is efficacious in tumors with an intact FGFR4 signaling pathway that includes FGF19, FGFR4, and KLB. BLU9931 is the first FGFR4-selective molecule for the treatment of patients with HCC with aberrant FGFR4 signaling.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Signal Transduction/drug effects , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mice , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Protein Binding , Protein Kinase Inhibitors/chemistry , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/chemistry , Sequence Alignment , Xenograft Model Antitumor Assays
5.
Bioorg Med Chem ; 11(13): 2663-76, 2003 Jul 03.
Article in English | MEDLINE | ID: mdl-12788340

ABSTRACT

This review addresses key pharmacology and virology issues relevant in discovery and development of CCR5 antagonists as anti-HIV drugs, such as target validation, receptor internalization, allosterism, viral resistance and tropism. Recent progress in the discovery and development of CCR5 antagonists, SAR and clinical status are reviewed. Finally, modeling-based structure of CCR5 is discussed in the context of a small-molecule antagonism of the CCR5 receptor.


Subject(s)
Anti-HIV Agents/chemistry , CCR5 Receptor Antagonists , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Binding, Competitive , Humans , Ligands , Models, Molecular , Receptors, CCR5/physiology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...