Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Phys Med Biol ; 66(11)2021 05 20.
Article in English | MEDLINE | ID: mdl-33887706

ABSTRACT

In the context of reducing the patient dose coming from CT scanner examinations without penalizing the diagnosis, the assessment of both patient dose and image quality (IQ) with relevant metrics is crucial. The present study represents the first stage in a larger work, aiming to compare and optimize CT protocols using dose and IQ new metrics. We proposed here to evaluate the capacity of the Non-PreWhitening matched filter with an eye (NPWE) model observer to be a robust and accurate estimation of IQ. We focused our work on two types of clinical tasks: a low contrast detection task and a discrimination task. We designed a torso-shaped phantom, including Plastic Water®slabs with cylindrical inserts of different diameters, sections and compositions. We led a human observer study with 13 human observers on images acquired in multiple irradiation and reconstruction scanning conditions (voltage, pitch, slice thickness, noise level of the reconstruction algorithm, energy level in dual-energy mode and dose), to evaluate the behavior of the model observer compared to the human responses faced to changing conditions. The model observer presented the same trends as the human observers with generally better results. We rescaled the NPWE model on the human responses by scanning conditions (kVp, pitch, slice thickness) to obtain the best agreement between both observer types, estimated using the Bland-Altman method. The impact of some scanning parameters was estimated using the correct answer rate given by the rescaled NPWE model, for both tasks and each insert size. In particular, the comparison between the dual-energy mode at 74 keV and the single-energy mode at 120 kVp showed that, if the 120 kVp voltage provided better results for the smallest insert at the lower doses for both tasks, their responses were equivalent in many cases.


Subject(s)
Benchmarking , Tomography, X-Ray Computed , Algorithms , Humans , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted
3.
Eur Radiol ; 30(10): 5690-5701, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32361774

ABSTRACT

OBJECTIVES: To establish national reference levels (RLs) in interventional procedures under CT guidance as required by the 2013/59/Euratom European Directive. METHODS: Seventeen categories of interventional procedures in thoracic, abdominopelvic, and osteoarticular specialties (percutaneous infiltration, vertebroplasty, biopsy, drainage, tumor destruction) were analyzed. Total dose length product (DLP), number of helical acquisitions (NH), and total DLP for helical, sequential, or fluoroscopic acquisitions were recorded for 10 to 20 patients per procedure at each center. RLs were calculated as the 3rd quartiles of the distributions and target values for optimization process (TVOs) as the median. RLs and TVOs were compared with previously published studies. RESULTS: Results on 5001 procedures from 49 centers confirmed the great variability in patient dose for the same category of procedures. RLs were proposed for the DLPs and NHs in the seventeen categories. RLs in terms of DLP and NH were 375 mGy.cm and 2 NH for spinal or peri-spinal infiltration, 1630 mGy.cm and 3 NH for vertebroplasty, 845 mGy.cm and 4 NH for biopsy, 1950 mGy.cm and 8 NH for destruction of tumors, and 1090 mGy.cm and 5 NH for drainage. DLP and NH increased with the complexity of procedures. CONCLUSIONS: This study was the first nationwide multicentric survey to propose RLs for interventional procedures under CT guidance. Heterogeneity of practice in centers were found with different levels of patient doses for the same procedure. The proposed RLs will allow imaging departments to benchmark their practice with others and optimize their protocols. KEY POINTS: • National reference levels are proposed for 17 categories of interventional procedures under CT guidance. • Reference levels are useful for benchmarking practices and optimizing protocols. • Reference levels are proposed for dose length product and the number of helical acquisitions.


Subject(s)
Radiation Dosage , Radiography, Interventional/standards , Reference Values , Tomography, X-Ray Computed/standards , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy , Female , Fluoroscopy/methods , France , Humans , Male , Middle Aged , Radiography, Interventional/methods , Reproducibility of Results , Retrospective Studies , Spine , Surveys and Questionnaires , Tomography, X-Ray Computed/methods , Vertebroplasty , Young Adult
5.
Eur Radiol ; 27(10): 4281-4290, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28289939

ABSTRACT

OBJECTIVES: A national retrospective survey on patient doses was performed by the French Society of Medical physicists to assess reference levels (RLs) in interventional radiology as required by the European Directive 2013/59/Euratom. METHODS: Fifteen interventional procedures in neuroradiology, vascular radiology and osteoarticular procedures were analysed. Kerma area product (KAP), fluoroscopy time (FT), reference air kerma and number of images were recorded for 10 to 30 patients per procedure. RLs were calculated as the 3rd quartiles of the distributions. RESULTS: Results on 4600 procedures from 36 departments confirmed the large variability in patient dose for the same procedure. RLs were proposed for the four dosimetric estimators and the 15 procedures. RLs in terms of KAP and FT were 90 Gm.cm2 and 11 mins for cerebral angiography, 35 Gy.cm2 and 16 mins for biliary drainage, 75 Gy.cm2 and 6 mins for lower limbs arteriography and 70 Gy.cm2 and 11 mins for vertebroplasty. For these four procedures, RLs were defined according to the complexity of the procedure. For all the procedures, the results were lower than most of those already published. CONCLUSIONS: This study reports RLs in interventional radiology based on a national survey. Continual evolution of practices and technologies requires regular updates of RLs. KEY POINTS: • Delivered dose in interventional radiology depends on procedure, practice and patient. • National RLs are proposed for 15 interventional procedures. • Reference levels (RLs) are useful to benchmark practices and optimize protocols. • RLs are proposed for kerma area product, air kerma, fluoroscopy time and number of images. • RLs should be adapted to the procedure complexity and updated regularly.


Subject(s)
Radiation Dosage , Radiography, Interventional/methods , Radiology, Interventional/methods , France , Humans , Radiation Protection/methods , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...