Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Adv Neurobiol ; 29: 41-64, 2023.
Article in English | MEDLINE | ID: mdl-36255671

ABSTRACT

The central nervous system is the last major organ system in the vertebrate body to yield its cellular structure, due to the complexity of its cells and their interactions. The fundamental unit of the nervous system is the neuron, which forms complex circuits that receive and integrate information and generate adaptive responses. Each neuron is composed of an input domain consisting of multiple dendrites along with the cell body, which is also responsible for the majority of macromolecule synthesis for the cell. The output domain is the axon which is a singular extension from the cell body that propagates the action potential to the synapse, where signals pass from one neuron to another. Facilitating these functions are cohorts of supporting cells consisting of astrocytes, oligodendrocytes and microglia along with NG2 cells and ependymal cells. Astrocytes have a dazzling array of functions including physical support, maintenance of homeostasis, development and integration of synaptic activity. Oligodendrocytes form the myelin sheath which surrounds axons and enables rapid conduction of the nerve impulse. Microglia are the resident immune cells, providing immune surveillance and remodeling of neuronal circuits during development and trauma. All these cells function in concert with each other, producing the remarkably diverse functions of the nervous system.


Subject(s)
Central Nervous System , Myelin Sheath , Central Nervous System/physiology , Axons , Oligodendroglia , Neuroglia
2.
Pharmaceutics ; 14(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745868

ABSTRACT

Paclitaxel is widely used in the treatment of various types of solid malignancies. Paclitaxel-induced peripheral neuropathy (PIPN) is often characterized by burning pain, cold, and mechanical allodynia in patients. Currently, specific pharmacological treatments against PIPN are lacking. Curcumin, a polyphenol of Curcuma longa, shows antioxidant, anti-inflammatory, and neuroprotective effects and has recently shown efficacy in the mitigation of various peripheral neuropathies. Here, we tested, for the first time, the therapeutic effect of 1.5% dietary curcumin and Meriva (a lecithin formulation of curcumin) in preventing the development of PIPN in C57BL/6J mice. Curcumin or Meriva treatment was initiated one week before injection of paclitaxel and continued throughout the study (21 days). Mechanical and cold sensitivity as well as locomotion/motivation were tested by the von Frey, acetone, and wheel-running tests, respectively. Additionally, sensory-nerve-action-potential (SNAP) amplitude by caudal-nerve electrical stimulation, electronic microscopy of the sciatic nerve, and inflammatory-protein quantification in DRG and the spinal cord were measured. Interestingly, a higher concentration of curcumin was observed in the spinal cord with the Meriva diet than the curcumin diet. Our results showed that paclitaxel-induced mechanical hypersensitivity was partially prevented by the curcumin diet but completely prevented by Meriva. Both the urcumin diet and the Meriva diet completely prevented cold hypersensitivity, the reduction in SNAP amplitude and reduced mitochondrial pathology in sciatic nerves observed in paclitaxel-treated mice. Paclitaxel-induced inflammation in the spinal cord was also prevented by the Meriva diet. In addition, an increase in α7 nAChRs mRNA, known for its anti-inflammatory effects, was also observed in the spinal cord with the Meriva diet in paclitaxel-treated mice. The use of the α7 nAChR antagonist and α7 nAChR KO mice showed, for the first time in vivo, that the anti-inflammatory effects of curcumin in peripheral neuropathy were mediated by these receptors. The results presented in this study represent an important advance in the understanding of the mechanism of action of curcumin in vivo. Taken together, our results show the therapeutic potential of curcumin in preventing the development of PIPN and further confirms the role of α7 nAChRs in the anti-inflammatory effects of curcumin.

3.
Front Pain Res (Lausanne) ; 2: 683168, 2021.
Article in English | MEDLINE | ID: mdl-35295533

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose limiting, and long-lasting side effect of chemotherapy treatment. Unfortunately, no treatment has proven efficacious for this side effect. Rodent models play a crucial role in the discovery of new mechanisms underlying the initiation, progression, and recovery of CIPN and the potential discovery of new therapeutics. However, there is limited consistency in the dose, the sex, age, and genetic background of the animal used in these studies and the outcome measures used in evaluation of CIPN rely primarily on noxious and reflexive measures. The main objective of this study was to provide a comprehensive and systematic characterization of oxaliplatin-induced peripheral neuropathy in mice by using a battery of behavioral, sensory, electrophysiological, and morphometric measures in both sexes of the two widely used strains of mice, C57BL/6J and BALB/cJ. Mice received intraperitoneal injections of 3 or 30 mg/kg cumulative doses of oxaliplatin over the course of 2 weeks. Both doses induced long-term and time-dependent mechanical and cold hypersensitivity. Our results show that 30 mg/kg oxaliplatin reduced the locomotor activity in C57BL/6J mice, and C57BL/6J females showed anxiety-like behavior one-week post completion of treatment. In the same dose group, BALB/cJ males and females sustained a larger decrease in sucrose preference than either male or female C57BL/6J mice. Both strains failed to show significant changes in burrowing and nesting behaviors. Two clinically relevant assessments of changes to the peripheral nerve fibers, nerve conduction and intraepidermal nerve fiber density (IENFD) were evaluated. Only BALB/cJ females showed significant reduction in the nerve conduction amplitude 1 week after 30 mg/kg oxaliplatin regimen. Moreover, this dose of the chemo agent reduced the IENF density in both sexes and strains. Our findings suggest that mouse strain, sex, and assay type should be carefully considered when assessing the effects of oxaliplatin and potential therapeutic interventions.

4.
Crit Care Explor ; 2(4): e0105, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32426747

ABSTRACT

Sedatives are suspected contributors to neurologic dysfunction in PICU patients, to whom they are administered during sensitive neurodevelopment. Relevant preclinical modeling has largely used comparatively brief anesthesia in infant age-approximate animals, with insufficient study of repetitive combined drug administration during childhood. We hypothesized that childhood neurodevelopment is selectively vulnerable to repeated treatment with benzodiazepine and opioid. We report a preclinical model of combined midazolam and morphine in early childhood age-approximate rats. DESIGN: Animal model. SETTING: Basic science laboratory. SUBJECTS: Male and female Long-Evans rats. INTERVENTIONS: Injections of morphine + midazolam were administered twice daily from postnatal days 18-22, tapering on postnatal days 23 and 24. Control groups included saline, morphine, or midazolam. To screen for acute neurodevelopmental effects, brain homogenates were analyzed by western blot for synaptophysin, drebrin, glial fibrillary acidic protein, S100 calcium-binding protein B, ionized calcium-binding adaptor molecule 1, and myelin basic proteins. Data analysis used Kruskal-Wallis with Dunn posttest, with a p value of less than 0.05 significance. MEASUREMENTS AND MAIN RESULTS: Morphine + midazolam and morphine animals gained less weight than saline or midazolam (p ≤ 0.01). Compared with saline, morphine + midazolam expressed significantly higher drebrin levels (p = 0.01), with numerically but not statistically decreased glial fibrillary acidic protein. Similarly, morphine animals exhibited less glial fibrillary acidic protein and more S100 calcium-binding protein B and synaptophysin. Midazolam animals expressed significantly more S100 calcium-binding protein B (p < 0.001) and 17-18.5 kDa myelin basic protein splicing isoform (p = 0.01), with numerically increased synaptophysin, ionized calcium-binding adaptor molecule 1, and 21.5 kDa myelin basic protein, and decreased glial fibrillary acidic protein. CONCLUSIONS: Analysis of brain tissue in this novel rodent model of repetitive morphine and midazolam administration showed effects on synaptic, astrocytic, microglial, and myelin proteins. These findings warrant further investigation because they may have implications for critically ill children requiring sedation and analgesia.

5.
Glia ; 68(7): 1513-1530, 2020 07.
Article in English | MEDLINE | ID: mdl-32065429

ABSTRACT

The generation of fully functional oligodendrocytes, the myelinating cells of the central nervous system, is preceded by a complex maturational process. We previously showed that the timing of oligodendrocyte differentiation and rat brain myelination were altered by perinatal exposure to buprenorphine and methadone, opioid analogs used for the management of pregnant addicts. Those observations suggested the involvement of the µ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOR). However, it remained to be determined if these receptors and their endogenous ligands could indeed control the timing of myelination under normal physiological conditions of brain development. We now found that the endogenous MOR ligand endomorphin-1 (EM-1) exerts a striking stimulatory action on cellular and morphological maturation of rat pre-oligodendrocytes, but unexpectedly, these effects appear to be restricted to the cells from the female pups. Critically, this stimulation is abolished by coincubation with the endogenous NOR ligand nociceptin. Furthermore, NOR antagonist treatment of 9-day-old female pups results in accelerated brain myelination. Interestingly, the lack of sex-dependent differences in developmental brain levels of EM-1 and nociceptin, or oligodendroglial expression of MOR and NOR, suggests that the observed sex-specific responses may be highly dependent on important intrinsic differences between the male and female oligodendrocytes. The discovery of a significant effect of EM-1 and nociceptin in the developing female oligodendrocytes and brain myelination, underscores the need for further studies investigating brain sex-related differences and their implications in opioid use and abuse, pain control, and susceptibility and remyelinating capacity in demyelinating disease as multiple sclerosis.


Subject(s)
Brain/metabolism , Oligodendroglia/metabolism , Opioid Peptides/metabolism , Sex Factors , Analgesics, Opioid/metabolism , Analgesics, Opioid/pharmacology , Animals , Brain/growth & development , Rats, Sprague-Dawley , Receptors, Opioid/metabolism , Receptors, Opioid, mu/metabolism
6.
Cancers (Basel) ; 13(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383736

ABSTRACT

BACKGROUND: Paclitaxel-induced peripheral neuropathy (PIPN) is a major adverse effect of this chemotherapeutic agent that is used in the treatment of a number of solid malignancies. PIPN leads notably to burning pain, cold and mechanical allodynia. PIPN is thought to be a consequence of alterations of mitochondrial function, hyperexcitability of neurons, nerve fiber loss, oxidative stress and neuroinflammation in dorsal root ganglia (DRG) and spinal cord (SC). Therefore, reducing neuroinflammation could potentially attenuate neuropathy symptoms. Peroxisome proliferator-activated receptor-α (PPAR-α) nuclear receptors that modulate inflammatory responses can be targeted by non-selective agonists, such as fenofibrate, which is used in the treatment of dyslipidemia. METHODS: Our studies tested the efficacy of a fenofibrate diet (0.2% and 0.4%) in preventing the development of PIPN. Paclitaxel (8 mg/kg) was administered via 4 intraperitoneal (i.p.) injections in C57BL/6J mice (both male and female). Mechanical and cold hypersensitivity, wheel running activity, sensory nerve action potential (SNAP), sciatic nerve histology, intra-epidermal fibers, as well as the expression of PPAR-α and neuroinflammation were evaluated in DRG and SC. RESULTS: Fenofibrate in the diet partially prevented the development of mechanical hypersensitivity but completely prevented cold hypersensitivity and the decrease in wheel running activity induced by paclitaxel. The reduction in SNAP amplitude induced by paclitaxel was also prevented by fenofibrate. Our results indicate that suppression of paclitaxel-induced pain by fenofibrate involves the regulation of PPAR-α expression through reduction in neuroinflammation. Finally, co-administration of paclitaxel and the active metabolite of fenofibrate (fenofibric acid) did not interfere with the suppression of tumor cell growth or clonogenicity by paclitaxel in ovarian and breast cancer cell lines. CONCLUSIONS: Taken together, our results show the therapeutic potential of fenofibrate in the prevention of PIPN development.

7.
Exp Neurol ; 320: 113010, 2019 10.
Article in English | MEDLINE | ID: mdl-31299179

ABSTRACT

Various antitumor drugs, including paclitaxel, frequently cause chemotherapy-induced peripheral neuropathy (CIPN) that can be sustained even after therapy has been completed. The current work was designed to evaluate R-47, an α7 nAChR silent agonist, in our mouse model of CIPN. R-47 was administered to male C57BL/6J mice prior to and during paclitaxel treatment. Additionally, we tested if R-47 would alter nicotine's reward and withdrawal effects. The H460 and A549 non-small cell lung cancer (NSCLC) cell lines were exposed to R-47 for 24-72 h, and tumor-bearing NSG mice received R-47 prior to and during paclitaxel treatment. R-47 prevents and reverses paclitaxel-induced mechanical hypersensitivity in mice in an α7 nAChR-dependent manner. No tolerance develops following repeated administration of R-47, and the drug lacks intrinsic rewarding effects. Additionally, R-47 neither changes the rewarding effect of nicotine in the Conditioned Place Preference test nor enhances mecamylamine-precipitated withdrawal. Furthermore, R-47 prevents paclitaxel-mediated loss of intraepidermal nerve fibers and morphological alterations of microglia in the spinal cord. Moreover, R-47 does not increase NSCLC cell viability, colony formation, or proliferation, and does not interfere with paclitaxel-induced growth arrest, DNA fragmentation, or apoptosis. Most importantly, R-47 does not increase the growth of A549 tumors or interfere with the antitumor activity of paclitaxel in tumor-bearing mice. These studies suggest that R-47 could be a viable and efficacious approach for the prevention and treatment of CIPN that would not interfere with the antitumor activity of paclitaxel or promote lung tumor growth.


Subject(s)
Antineoplastic Agents/toxicity , Nicotinic Agonists/pharmacology , Paclitaxel/toxicity , Peripheral Nervous System Diseases/chemically induced , Piperazines/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/agonists , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung , Drug Tolerance , Humans , Lung Neoplasms , Male , Mice , Mice, Inbred C57BL , Neoplasms, Experimental , Nicotine/pharmacology , Reward
8.
Behav Pharmacol ; 29(2 and 3-Spec Issue): 290-298, 2018 04.
Article in English | MEDLINE | ID: mdl-29369054

ABSTRACT

Paclitaxel is a cancer chemotherapy with adverse effects that include peripheral neuropathy, neuropathic pain, and depression of behavior and mood. In rodents, hypersensitive paw-withdrawal reflexes from mechanical stimuli serve as one common measure of paclitaxel-induced pain-related behavior. This study tested the hypothesis that paclitaxel would also depress rates of positively reinforced operant responding as a measure of pain-related behavioral depression. Male and female Sprague-Dawley rats were equipped with electrodes targeting the medial forebrain bundle, trained to lever press for electrical brain stimulation in an assay of intracranial self-stimulation (ICSS), and treated with four injections of varying paclitaxel doses (0.67, 2.0, or 6.0 mg/kg/injection×4 injections on alternate days). Mechanical sensitivity, body weight, and ICSS were evaluated before, during, and for 3 weeks after paclitaxel treatment. Paclitaxel doses sufficient to produce mechanical hypersensitivity did not reliably depress ICSS in male or female rats. Moreover, the degree of behavioral suppression in individual rats did not correlate with mechanical sensitivity. Paclitaxel treatment regimens commonly used to model chemotherapy-induced neuropathic pain in rats are not sufficient to depress ICSS.


Subject(s)
Paclitaxel/pharmacology , Self Stimulation/drug effects , Analgesics, Opioid/pharmacology , Animals , Conditioning, Operant/drug effects , Electric Stimulation , Female , Male , Medial Forebrain Bundle/drug effects , Neuralgia/drug therapy , Paclitaxel/metabolism , Pain/drug therapy , Pain Management , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology
9.
J Pharmacol Exp Ther ; 364(1): 110-119, 2018 01.
Article in English | MEDLINE | ID: mdl-29042416

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments. Our studies were designed to investigate whether nicotine can prevent and/or reverse paclitaxel-induced peripheral neuropathy in a mouse model of CIPN, while ensuring that nicotine will not stimulate lung tumor cell proliferation or interfere with the antitumor properties of paclitaxel. Male C57BL/6J mice received paclitaxel every other day for a total of four injections (8 mg/kg, i.p.). Acute (0.3-0.9 mg/kg, i.p.) and chronic (24 mg/kg per day, s.c.) administration of nicotine respectively reversed and prevented paclitaxel-induced mechanical allodynia. Blockade of the antinociceptive effect of nicotine with mecamylamine and methyllycaconitine suggests that the reversal of paclitaxel-induced mechanical allodynia is primarily mediated by the α7 nicotinic acetylcholine receptor subtype. Chronic nicotine treatment also prevented paclitaxel-induced intraepidermal nerve fiber loss. Notably, nicotine neither promoted proliferation of A549 and H460 non-small cell lung cancer cells nor interfered with paclitaxel-induced antitumor effects, including apoptosis. Most importantly, chronic nicotine administration did not enhance Lewis lung carcinoma tumor growth in C57BL/6J mice. These data suggest that the nicotinic acetylcholine receptor-mediated pathways may be promising drug targets for the prevention and treatment of CIPN.


Subject(s)
Hyperalgesia/drug therapy , Hyperalgesia/prevention & control , Nicotine/pharmacology , Paclitaxel/adverse effects , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Bridged-Ring Compounds/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Disease Models, Animal , Hyperalgesia/chemically induced , Lung Neoplasms/drug therapy , Male , Mice , Mice, Inbred C57BL , Paclitaxel/pharmacology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Receptors, Cholinergic/metabolism , Taxoids/pharmacology
10.
Glia ; 65(12): 2003-2023, 2017 12.
Article in English | MEDLINE | ID: mdl-28906039

ABSTRACT

Our previous results showed that oligodendrocyte development is regulated by both nociceptin and its G-protein coupled receptor, the nociceptin/orphanin FQ receptor (NOR). The present in vitro and in vivo findings show that nociceptin plays a crucial conserved role regulating the levels of the glutamate/aspartate transporter GLAST/EAAT1 in both human and rodent brain astrocytes. This nociceptin-mediated response takes place during a critical developmental window that coincides with the early stages of astrocyte maturation. GLAST/EAAT1 upregulation by nociceptin is mediated by NOR and the downstream participation of a complex signaling cascade that involves the interaction of several kinase systems, including PI-3K/AKT, mTOR, and JAK. Because GLAST is the main glutamate transporter during brain maturation, these novel findings suggest that nociceptin plays a crucial role in regulating the function of early astrocytes and their capacity to support glutamate homeostasis in the developing brain.


Subject(s)
Amino Acid Transport System X-AG/metabolism , Astrocytes/metabolism , Gene Expression Regulation, Developmental/genetics , Opioid Peptides/metabolism , Receptors, Opioid/deficiency , Aldehyde Dehydrogenase 1 Family , Animals , Animals, Newborn , Astrocytes/drug effects , Cells, Cultured , Enzyme Inhibitors/pharmacology , Fetus/cytology , Glial Fibrillary Acidic Protein/metabolism , Glutamic Acid/metabolism , Humans , Hydroxylamines/pharmacology , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Opioid Peptides/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Opioid/genetics , Retinal Dehydrogenase/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Nociceptin Receptor , Nociceptin
11.
Neuropharmacology ; 117: 305-315, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28237807

ABSTRACT

Paclitaxel, one of the most commonly used cancer chemotherapeutic drugs, effectively extends the progression-free survival of breast, lung, and ovarian cancer patients. However, paclitaxel and other chemotherapy drugs elicit peripheral nerve fiber dysfunction or degeneration that leads to peripheral neuropathy in a large proportion of cancer patients. Patients receiving chemotherapy also often experience changes in mood, including anxiety and depression. These somatic and affective disorders represent major dose-limiting side effects of chemotherapy. Consequently, the present study was designed to develop a preclinical model of paclitaxel-induced negative affective symptoms in order to identify treatment strategies and their underlying mechanisms of action. Intraperitoneal injections of paclitaxel (8 mg/kg) resulted in the development and maintenance of mechanical and cold allodynia. Carboplatin, another cancer chemotherapeutic drug that is often used in combination with paclitaxel, sensitized mice to the nociceptive effects of paclitaxel. Paclitaxel also induced anxiety-like behavior, as assessed in the novelty suppressed feeding and light/dark box tests. In addition, paclitaxel-treated mice displayed depression-like behavior during the forced swim test and an anhedonia-like state in the sucrose preference test. In summary, paclitaxel produced altered behaviors in assays modeling affective states in C57BL/6J male mice, while increases in nociceptive responses were longer in duration. The characterization of this preclinical model of chemotherapy-induced allodynia and affective symptoms, possibly related to neuropathic pain, provides the basis for determining the mechanism(s) underlying severe side effects elicited by paclitaxel, as well as for predicting the efficacy of potential therapeutic interventions.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Behavior, Animal/drug effects , Hyperalgesia/chemically induced , Nociceptive Pain/chemically induced , Paclitaxel/toxicity , Anhedonia/drug effects , Animals , Anxiety/chemically induced , Carboplatin/toxicity , Depression/chemically induced , Epidermis/drug effects , Epidermis/innervation , Epidermis/pathology , Hyperalgesia/pathology , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Nociceptive Pain/pathology , Random Allocation
12.
J Tissue Eng Regen Med ; 10(8): 656-68, 2016 08.
Article in English | MEDLINE | ID: mdl-23950083

ABSTRACT

Spinal cord injury results in tissue necrosis in and around the lesion site, commonly leading to the formation of a fluid-filled cyst. This pathological end point represents a physical gap that impedes axonal regeneration. To overcome the obstacle of the cavity, we have explored the extent to which axonal substrates can be bioengineered through electrospinning, a process that uses an electrical field to produce fine fibres of synthetic or biological molecules. Recently, we demonstrated the potential of electrospinning to generate an aligned matrix that can influence the directionality and growth of axons. Here, we show that this matrix can be supplemented with nerve growth factor and chondroitinase ABC to provide trophic support and neutralize glial-derived inhibitory proteins. Moreover, we show how air-gap electrospinning can be used to generate a cylindrical matrix that matches the shape of the cord. Upon implantation in a completely transected rat spinal cord, matrices supplemented with NGF and chondroitinase ABC promote significant functional recovery. An examination of these matrices post-implantation shows that electrospun aligned monofilaments induce a more robust cellular infiltration than unaligned monofilaments. Further, a vascular network is generated in these matrices, with some endothelial cells using the electrospun fibres as a growth substrate. The presence of axons within these implanted matrices demonstrates that they facilitate axon regeneration following spinal cord injury. Collectively, these results demonstrate the potential of electrospinning to generate an aligned substrate that can provide trophic support, directional guidance cues and regeneration-inhibitory neutralizing compounds to regenerating axons following spinal cord injury. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Axons/metabolism , Chondroitin ABC Lyase , Nerve Growth Factor , Spinal Cord Injuries/therapy , Spinal Cord Regeneration/drug effects , Tissue Scaffolds/chemistry , Animals , Axons/pathology , Chondroitin ABC Lyase/chemistry , Chondroitin ABC Lyase/pharmacology , Nerve Growth Factor/chemistry , Nerve Growth Factor/pharmacology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
13.
Dev Neurosci ; 36(5): 409-21, 2014.
Article in English | MEDLINE | ID: mdl-25138998

ABSTRACT

Oligodendrocytes express opioid receptors throughout development, but the role of the opioid system in myelination remains poorly understood. This is a significant problem as opioid use and abuse continue to increase in two particular populations: pregnant addicts (in whom drug effects could target early myelination in the fetus and newborn) and adolescents and young adults (in whom late myelination of 'higher-order' regions takes place). Maintenance treatments for opioid addicts include the long-lasting opioids methadone and buprenorphine. Similar to our previous findings on the effects of buprenorphine, we have now found that early myelination in the developing rat brain is also altered by perinatal exposure to therapeutic doses of methadone. Pups exposed to this drug exhibited elevated brain levels of the 4 major splicing variants of myelin basic protein, myelin proteolipid protein, and myelin-oligodendrocyte glycoprotein. Consistent with the enrichment and function of these proteins in mature myelin, analysis of the corpus callosum in these young animals also indicated an elevated number of axons with already highly compacted myelin sheaths. Moreover, studies in cultured cells showed that methadone exerts direct effects at specific stages of the oligodendrocyte lineage, stimulating the proliferation of progenitor cells while on the other hand accelerating the maturation of the more differentiated but still immature preoligodendrocytes. While the long-term effects of these observations remain unknown, accelerated or increased oligodendrocyte maturation and myelination could both disrupt the complex sequence of synchronized events leading to normal connectivity in the developing brain. Together with our previous observations on the effects of buprenorphine, the present findings further underscore a crucial function of the endogenous opioid system in the control of oligodendrocyte development and the timing of myelination. Interference with these regulatory systems by opioid use or maintenance treatments could disrupt the normal process of brain maturation at critical stages of myelin formation.


Subject(s)
Brain/drug effects , Cell Lineage/drug effects , Methadone/pharmacology , Myelin Sheath/drug effects , Narcotic Antagonists/pharmacology , Oligodendroglia/drug effects , Prenatal Exposure Delayed Effects/metabolism , Animals , Axons/drug effects , Axons/metabolism , Brain/metabolism , Cell Proliferation/drug effects , Female , Myelin Basic Protein/metabolism , Myelin Proteolipid Protein/metabolism , Myelin Sheath/metabolism , Myelin-Oligodendrocyte Glycoprotein/metabolism , Pregnancy , Rats
14.
Acta Biomater ; 7(1): 203-15, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20727992

ABSTRACT

We describe the structural and functional properties of three-dimensional (3D) nerve guides fabricated from poly-ε-caprolactone (PCL) using the air gap electrospinning process. This process makes it possible to deposit nano-to-micron diameter fibers into linear bundles that are aligned in parallel with the long axis of a cylindrical construct. By varying starting electrospinning conditions it is possible to modulate scaffold material properties and void space volume. The architecture of these constructs provides thousands of potential channels to direct axon growth. In cell culture functional assays, scaffolds composed of individual PCL fibers ranging from 400 to 1500 nm supported the penetration and growth of axons from rat dorsal root ganglion. To test the efficacy of our guide design we reconstructed 10mm lesions in the rodent sciatic nerve with scaffolds that had fibers 1 µm in average diameter and void volumes >90%. Seven weeks post implantation, microscopic examination of the regenerating tissue revealed dense, parallel arrays of myelinated and non-myelinated axons. Functional blood vessels were scattered throughout the implant. We speculate that end organ targeting might be improved in nerve injuries if axons can be directed to regenerate along specific tissue planes by a guide composed of 3D fiber arrays.


Subject(s)
Air , Guided Tissue Regeneration/methods , Nerve Regeneration/physiology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Fourier Analysis , Implants, Experimental , Materials Testing , Peripheral Nerves/physiology , Peripheral Nerves/ultrastructure , Rats , Solutions
15.
Glia ; 56(9): 1017-27, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18381654

ABSTRACT

Buprenorphine is a mu-opioid receptor partial agonist and kappa-opioid receptor antagonist currently on trials for the management of pregnant opioid-dependent addicts. However, little is known about the effects of buprenorphine on brain development. Oligodendrocytes express opioid receptors in a developmentally regulated manner and thus, it is logical to hypothesize that perinatal exposure to buprenorphine could affect myelination. To investigate this possibility, pregnant rats were implanted with minipumps to deliver buprenorphine at 0.3 or 1 mg/kg/day. Analysis of their pups at different postnatal ages indicated that exposure to 0.3 mg/kg/day buprenorphine caused an accelerated and significant increase in the brain expression of all myelin basic protein (MBP) splicing isoforms. In contrast, treatment with the higher dose caused a developmental delay in MBP expression. Examination of corpus callosum at 26-days of age indicated that both buprenorphine doses cause a significant increase in the caliber of the myelinated axons. Surprisingly, these axons have a disproportionately thinner myelin sheath, suggesting alterations at the level of axon-glial interactions. Analysis of myelin associated glycoprotein (MAG) expression and glycosylation indicated that this molecule may play a crucial role in mediating these effects. Co-immunoprecipitation studies also suggested a mechanism involving a MAG-dependent activation of the Src-family tyrosine kinase Fyn. These results support the idea that opioid signaling plays an important role in regulating myelination in vivo and stress the need for further studies investigating potential effects of perinatal buprenorphine exposure on brain development.


Subject(s)
Brain/growth & development , Brain/pathology , Buprenorphine/administration & dosage , Myelin Sheath/pathology , Opioid-Related Disorders/pathology , Prenatal Exposure Delayed Effects/pathology , Animals , Animals, Newborn , Brain/drug effects , Buprenorphine/adverse effects , Female , Myelin Sheath/drug effects , Myelin Sheath/physiology , Pregnancy , Rats , Rats, Sprague-Dawley
16.
Neuron Glia Biol ; 3(2): 119-26, 2007 May.
Article in English | MEDLINE | ID: mdl-18458759

ABSTRACT

One of the many obstacles to spinal cord repair following trauma is the formation of a cyst that impedes axonal regeneration. Accordingly, we examined the potential use of electrospinning to engineer an implantable polarized matrix for axonal guidance. Polydioxanone, a resorbable material, was electrospun to fabricate matrices possessing either aligned or randomly oriented fibers. To assess the extent to which fiber alignment influences directional neuritic outgrowth, rat dorsal root ganglia (DRGs) were cultured on these matrices for 10 days. Using confocal microscopy, neurites displayed a directional growth that mimicked the fiber alignment of the underlying matrix. Because these matrices are generated from a material that degrades with time, we next determined whether a glial substrate might provide a more stable interface between the resorbable matrix and the outgrowing axons. Astrocytes seeded onto either aligned or random matrices displayed a directional growth pattern similar to that of the underlying matrix. Moreover, these glia-seeded matrices, once co-cultured with DRGs, conferred the matrix alignment to and enhanced outgrowth exuberance of the extending neurites. These experiments demonstrate the potential for electrospinning to generate an aligned matrix that influences both the directionality and growth dynamics of DRG neurites.

17.
J Cell Biol ; 166(3): 381-92, 2004 Aug 02.
Article in English | MEDLINE | ID: mdl-15289497

ABSTRACT

The process of neurite extension after activation of the TrkA tyrosine kinase receptor by nerve growth factor (NGF) involves complex signaling pathways. Stimulation of sphingosine kinase 1 (SphK1), the enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P), is part of the functional TrkA signaling repertoire. In this paper, we report that in PC12 cells and dorsal root ganglion neurons, NGF translocates SphK1 to the plasma membrane and differentially activates the S1P receptors S1P1 and S1P2 in a SphK1-dependent manner, as determined with specific inhibitors and small interfering RNA targeted to SphK1. NGF-induced neurite extension was suppressed by down-regulation of S1P1 expression with antisense RNA. Conversely, when overexpressed in PC12 cells, transactivation of S1P1 by NGF markedly enhanced neurite extension and stimulation of the small GTPase Rac, important for the cytoskeletal changes required for neurite extension. Concomitantly, differentiation down-regulated expression of S1P2 whose activation would stimulate Rho and inhibit neurite extension. Thus, differential transactivation of S1P receptors by NGF regulates antagonistic signaling pathways that modulate neurite extension.


Subject(s)
Nerve Growth Factor/metabolism , Neurites/metabolism , Receptors, G-Protein-Coupled/metabolism , Transcriptional Activation , Animals , Ganglia, Spinal/metabolism , PC12 Cells , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Rats , Receptors, G-Protein-Coupled/genetics , Receptors, Lysophospholipid , rac GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/metabolism
18.
J Physiol ; 558(Pt 1): 147-59, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15146042

ABSTRACT

The amiloride-insensitive salt taste receptor is the predominant transducer of salt taste in some mammalian species, including humans. The physiological, pharmacological and biochemical properties of the amiloride-insensitive salt taste receptor were investigated by RT-PCR, by the measurement of unilateral apical Na+ fluxes in polarized rat fungiform taste receptor cells and by chorda tympani taste nerve recordings. The chorda tympani responses to NaCl, KCl, NH4Cl and CaCl2 were recorded in Sprague-Dawley rats, and in wild-type and vanilloid receptor-1 (VR-1) knockout mice. The chorda tympani responses to mineral salts were monitored in the presence of vanilloids (resiniferatoxin and capsaicin), VR-1 antagonists (capsazepine and SB-366791), and at elevated temperatures. The results indicate that the amiloride-insensitive salt taste receptor is a constitutively active non-selective cation channel derived from the VR-1 gene. It accounts for all of the amiloride-insensitive chorda tympani taste nerve response to Na+ salts and part of the response to K+, NH4+ and Ca2+ salts. It is activated by vanilloids and temperature (> 38 degrees C), and is inhibited by VR-1 antagonists. In the presence of vanilloids, external pH and ATP lower the temperature threshold of the channel. This allows for increased salt taste sensitivity without an increase in temperature. VR-1 knockout mice demonstrate no functional amiloride-insensitive salt taste receptor and no salt taste sensitivity to vanilloids and temperature. We conclude that the mammalian non-specific salt taste receptor is a VR-1 variant.


Subject(s)
Amiloride/pharmacology , Diuretics/pharmacology , Ion Channels/physiology , Salts/pharmacology , Taste Buds/physiology , Taste/physiology , Animals , Cations/metabolism , Chorda Tympani Nerve/physiology , Female , Hot Temperature , Ion Channels/antagonists & inhibitors , Ion Channels/genetics , Mammals , Mice , Mice, Inbred C57BL , Mice, Knockout , Minerals/pharmacology , Rats , Rats, Sprague-Dawley , TRPV Cation Channels , Taste Buds/drug effects , Thermodynamics
19.
Neurochem Res ; 29(11): 2043-50, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15662838

ABSTRACT

Acetylcholinesterase (AChE) is expressed by dorsal root ganglion (DRG) neurons during developmental periods when their central axons are growing into and through the spinal cord. Importantly, our previous studies have shown that AChE induces DRG axonal outgrowth by an adhesive mechanism and thus, have now employed a blot overlay technique to screen for potential AChE binding proteins in the developing spinal cord. Our results show that: (1) AChE binds to proteins with apparent molecular weights of 200, 110, 35, and 33 kDa; (2) these proteins are developmentally expressed during periods of axonal outgrowth from DRG neurons; (3) all four proteins are synthesized by astrocytes; and (4) AChE binding to these proteins is highly dependent on ionic strength supporting an electrostatic mechanism of adhesion. Taken together, these data provide further documentation for the participation of AChE in adhesive interactions during morphogenesis of the central nervous system and suggest a role for astrocytes in regulating AChE-mediated axonal growth.


Subject(s)
Acetylcholinesterase/metabolism , Neural Cell Adhesion Molecules/physiology , Spinal Cord/growth & development , Spinal Cord/metabolism , Animals , Astrocytes/metabolism , Axons/physiology , Electrochemistry , Electrophoresis, Polyacrylamide Gel , Female , Ganglia, Spinal/metabolism , Immunoblotting , Laminin/analysis , Laminin/metabolism , Pregnancy , Protein Binding , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...