Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 25(1): 88-91, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25466197

ABSTRACT

Novel azole compounds were prepared which demonstrated potent hCB2 binding activities with antioxidant activity for a selected compound. These compounds show good selectivity over the hCB1 receptor and are full agonists at the hCB2 receptor.


Subject(s)
Azoles/chemistry , Azoles/metabolism , Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Agonists/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Animals , CHO Cells , Cannabinoids/chemistry , Cannabinoids/metabolism , Cricetinae , Cricetulus , Humans
2.
Int J Cancer ; 124(6): 1449-56, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19065668

ABSTRACT

CDC25 phosphatases are key actors in cyclin-dependent kinases activation whose role is essential at various stages of the cell cycle. CDC25 expression is upregulated in a number of human cancers. CDC25 phosphatases are therefore thought to represent promising novel targets in cancer therapy. Here, we report the identification and the characterization of IRC-083864, an original bis-quinone moiety that is a potent and selective inhibitor of CDC25 phosphatases in the low nanomolar range. IRC-083864 inhibits cell proliferation of a number of cell lines, regardless of their resistance to other drugs. It irreversibly inhibits cell proliferation and cell cycle progression and prevents entry into mitosis. In addition, it inhibits the growth of HCT-116 tumor spheroids with induction of p21 and apoptosis. Finally, IRC-083864 reduced tumor growth in mice with established human prostatic and pancreatic tumor xenografts. This study describes a novel compound, which merits further study as a potential anticancer agent.


Subject(s)
Benzothiazoles/therapeutic use , Benzoxazoles/therapeutic use , Enzyme Inhibitors/therapeutic use , Quinones/therapeutic use , cdc25 Phosphatases/antagonists & inhibitors , Animals , Cell Cycle/drug effects , Cell Division/drug effects , Cell Line, Tumor/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Cyclin-Dependent Kinases/metabolism , Flow Cytometry , Humans , Mice , Mice, Nude , Transplantation, Heterologous
3.
Mol Cancer Ther ; 7(8): 2426-34, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18723488

ABSTRACT

Tubulin is a validated target for antitumor drugs. However, the effectiveness of these microtubule-interacting agents is limited by the fact that they are substrates for drug efflux pumps (P-glycoprotein) and/or by the acquisition of point mutations in tubulin residues important for drug-tubulin binding. To bypass these resistance systems, we have identified and characterized a novel synthetic imidazole derivative IRC-083927, which inhibits the tubulin polymerization by a binding to the colchicine site. IRC-083927 inhibits in vitro cell growth of human cancer cell lines in the low nanomolar range. More interesting, it remains highly active against cell lines resistant to microtubule-interacting agents (taxanes, Vinca alkaloids, or epothilones). Such resistances are due to the presence of efflux pumps (NCI-H69/LX4 resistant to navelbine and paclitaxel) and/or the presence of mutations on beta-tubulin and on alpha-tubulin and beta-tubulin (A549.EpoB40/A549.EpoB480 resistant to epothilone B or paclitaxel). IRC-083927 displayed cell cycle arrest in G(2)-M phase in tumor cells, including in the drug-resistant cells. In addition, IRC-083927 inhibited endothelial cell proliferation in vitro and vessel formation in the low nanomolar range supporting an antiangiogenic behavior. Finally, chronic oral treatment with IRC-083927 (5 mg/kg) inhibits the growth of two human tumor xenografts in nude mice (C33-A, human cervical cancer and MDA-MB-231, human hormone-independent breast cancer). Together, the antitumor effects induced by IRC-083927 on tumor models resistant to tubulin agents support further investigations to fully evaluate its potential for the treatment of advanced cancers, particularly those resistant to current clinically available drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Division/drug effects , Imidazoles/pharmacology , Sulfonamides/pharmacology , Tubulin/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Cycle/drug effects , Drug Resistance, Neoplasm , Humans , Mice , Neovascularization, Pathologic , Transplantation, Heterologous
5.
Pharmacol Ther ; 115(1): 1-12, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17531323

ABSTRACT

The CDC25 phosphatases are key regulators of cell cycle progression and play a central role in the checkpoint response to DNA damage. Their inhibition may therefore represent a promising therapeutic approach in oncology, and small molecule design strategies are currently leading to the identification of various classes of CDC25 inhibitors. Most structures developed so far are quinonoid-based compounds, but also phosphate surrogates or electrophilic entities. Considering the characteristics of the highly conserved active sites of the enzymes, many mechanisms of action have been proposed for these inhibitors. Quinonoid compounds may oxidize the catalytic site cysteine, but can also be considered as Michaël acceptors capable of reacting with the activated thiolate or other electrophilic entities. Phosphate surrogates are thought to interfere with the arginine residue, leading to reversible enzyme inhibition. But some inhibitors can combine in the same molecule several of these mechanisms, thus by fitting into the active site of the enzyme through one part of the molecule and bringing the reactive moiety in close proximity to the catalytic cysteine. This review summarizes novel classes of inhibitors that show specificity for the CDC25s over other phosphatases, cause cell proliferation inhibition and cell cycle arrest in vitro but also, for several of them, inhibition of xenografted tumoral cell growth in vivo. These promising results confirm the interest of the inhibition of CDC25 phosphatases as an anticancer therapeutic strategy.


Subject(s)
Enzyme Inhibitors/pharmacology , cdc25 Phosphatases/antagonists & inhibitors , Animals , Enzyme Inhibitors/chemistry , Humans
7.
Bioorg Med Chem Lett ; 16(6): 1586-9, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16380258

ABSTRACT

A series of dipeptides with dual inhibitory activities on calpain and lipid peroxidation were prepared to target the intracellular calpain. This optimization program focused on the variations of the linker and the N-terminal amino acid of the peptidic core. Two compounds 6d-05 and 6d-08 exhibited potent intracellular calpain inhibition. The polar surface area and the number of rotors appeared to be critical descriptors to account for the behavior of these hybrid molecules in the cellular calpain assay.


Subject(s)
Antioxidants/pharmacology , Calpain/antagonists & inhibitors , Cell Death/drug effects , Dipeptides/pharmacology , Lipid Peroxidation/drug effects , Animals , Antioxidants/chemical synthesis , Brain/drug effects , Calpain/metabolism , Dipeptides/chemical synthesis , Glioma/drug therapy , Humans , Inhibitory Concentration 50 , Microsomes/drug effects , Rats , Structure-Activity Relationship
8.
Cancer Res ; 64(14): 4942-9, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15256467

ABSTRACT

BN80927 belongs to a novel family of camptothecin analogs, the homocamptothecins, developed on the concept of topoisomerase I (Topo I) inhibition and characterized by a stable seven-membered beta-hydroxylactone ring. Preclinical data reported here show that BN80927 retains Topo I poisoning activity in cell-free assay (DNA relaxation) as well as in living cells, in which in vivo complexes of topoisomerase experiments and quantification of DNA-protein-complexes stabilization, have confirmed the higher potency of BN80927 as compared with the Topo I inhibitor SN38. In addition, BN80927 inhibits Topo II-mediated DNA relaxation in vitro but without cleavable-complex stabilization, thus indicating catalytic inhibition. Moreover, a Topo I-altered cell line (KBSTP2), resistant to SN38, remains sensitive to BN80927, suggesting that a part of the antiproliferative effects of BN80927 are mediated by a Topo I-independent pathway. This hypothesis is also supported by in vitro data showing an antiproliferative activity of BN80927 on a model of resistance related to the noncycling state of cells (G(0)-G(1) synchronized). In cell growth assays, BN80927 is a very potent antiproliferative agent as shown by IC(50) values consistently lower than those of SN38 in tumor cell lines as well as in their related drug-resistant lines. BN80927 shows high efficiency in vivo in tumor xenograft studies using human androgen-independent prostate tumors PC3 and DU145. Altogether, these data strongly support the clinical development of BN80927.


Subject(s)
Antineoplastic Agents/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Prostatic Neoplasms/drug therapy , Adenocarcinoma/blood , Adenocarcinoma/drug therapy , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Animals , Camptothecin/blood , Cell Division/drug effects , Cell Line, Tumor , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/metabolism , DNA, Superhelical/drug effects , DNA, Superhelical/metabolism , Drug Screening Assays, Antitumor , Drug Stability , Enzyme Inhibitors/pharmacology , HL-60 Cells , Humans , K562 Cells , Male , Mice , Mice, Nude , Neoplasms, Hormone-Dependent/drug therapy , Neoplasms, Hormone-Dependent/pathology , Prostatic Neoplasms/blood , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Topoisomerase I Inhibitors , Topoisomerase II Inhibitors , Xenograft Model Antitumor Assays
10.
Bioorg Med Chem Lett ; 14(14): 3825-8, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15203170

ABSTRACT

A series of molecules with dual inhibitory activities on calpain and lipid peroxidation were synthesized. These hybrid compounds were built on the calpain pharmacophore 2-hydroxytetrahydrofuran linked to a set of antioxidants via a l-leucine linker. Compound 7, the most potent in cellular calpain and lipid peroxidation inhibitions, provided effective protection against glial cell death induced by maitotoxin.


Subject(s)
Antioxidants/chemical synthesis , Calpain/antagonists & inhibitors , Cell Death/drug effects , Lipid Peroxidation/drug effects , Lipoxygenase Inhibitors/chemical synthesis , Antioxidants/pharmacology , Calpain/metabolism , Furans/chemistry , Humans , Inhibitory Concentration 50 , Leucine/chemistry , Lipoxygenase Inhibitors/pharmacology , Neuroglia , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 13(2): 209-12, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12482425

ABSTRACT

A series of hybrid compounds possessing an nNOS pharmacophore linked to an antioxidant fragment has been synthesized. Among them, compound 8d, a propofol derivative, displayed the greatest dual potencies against nNOS (IC(50)=0.12 microM) and lipid peroxidation (IC(50)=0.4 microM) accompanied with e/nNOS selectivity (67.5). This shows that nNOS was able to accommodate very bulky groups such as di-tert-butyl or di-iso-propyl phenol in its active site.


Subject(s)
Antioxidants/chemical synthesis , Antioxidants/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Lipid Peroxidation/drug effects , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/pharmacology , Nitric Oxide Synthase Type I , Nitric Oxide Synthase Type III , Propofol/analogs & derivatives , Propofol/chemical synthesis , Propofol/pharmacology , Substrate Specificity
14.
Bioorg Med Chem Lett ; 12(3): 505-7, 2002 Feb 11.
Article in English | MEDLINE | ID: mdl-11814829

ABSTRACT

Vinblastine and vinorelbine analogues have been synthesised by reacting new versatile electrophilic vindoline derivatives with various 3-substituted indoles. The resulting compounds have been evaluated for their antimitotic properties, but exhibited less potent activities in comparison with the standard binary Vinca alkaloids.


Subject(s)
Antineoplastic Agents, Phytogenic/chemical synthesis , Vinca Alkaloids/chemical synthesis , Chromatography, High Pressure Liquid , Drug Screening Assays, Antitumor , Magnetic Resonance Spectroscopy , Tubulin Modulators
SELECTION OF CITATIONS
SEARCH DETAIL
...