Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 55(1): 145-158.e7, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34879222

ABSTRACT

Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder/immunology , CD4-Positive T-Lymphocytes/immunology , Chromatin/metabolism , Gastrointestinal Microbiome/immunology , Inflammation/immunology , Interleukin-17/metabolism , Intestines/immunology , Neurodevelopmental Disorders/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Autism Spectrum Disorder/microbiology , Child , Disease Models, Animal , Fecal Microbiota Transplantation , Female , Humans , Immunization , Inflammation/microbiology , Mice , Neurodevelopmental Disorders/microbiology , Pregnancy , Prenatal Exposure Delayed Effects/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...