Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Talanta ; 278: 126522, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38991408

ABSTRACT

Due to its role as a free radical signal-transducing agent with a short lifespan, precise measurement of nitric oxide (●NO) levels presents significant challenges. Various analytical techniques offer distinct advantages and disadvantages for ●NO detection. This research aims to simplify the detection process by developing a hydrogel system using iron(III)-protoporphyrin IX (hemin)-loaded hyaluronan for the detection of ●NO in solution. Various hydrogel formulations were created, and the effects of their components on hydrogel-supported luminol chemiluminescence (CL) kinetics, radical scavenging, and physicochemical properties were analysed through factorial analysis. The candidate formulations were then evaluated using two ●NO donors. An increase in the degree of crosslinking in unloaded formulations enhanced interactions with the CL reaction components, hydrogen peroxide (H2O2) and luminol, thereby affecting light generation. However, hemin loading negated these effects, resulting in more prominent luminescence kinetics in formulations with lower crosslinking degrees. Similarly, ●NO influenced the kinetics differently, interacting with both the CL reaction and hydrogel components. Hemin-loaded formulations exhibited enhanced signal propagation when exposed to ●NO, followed by H2O2 and luminol, whereas reversing the order of addition inhibited this propagation. The magnitude of these luminescence changes depended on the type and concentration of the ●NO donor, demonstrating greater sensitivity to ●NO levels compared to amperometric sensing. These findings suggest that the studied hydrogel platform has potential for the facile and accurate detection of ●NO in solution, requiring minimal sample sizes.

2.
ACS Appl Bio Mater ; 7(6): 4102-4115, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38758756

ABSTRACT

The diatom's frustule, characterized by its rugged and porous exterior, exhibits a remarkable biomimetic morphology attributable to its highly ordered pores, extensive surface area, and unique architecture. Despite these advantages, the toxicity and nonbiodegradable nature of silica-based organisms pose a significant challenge when attempting to utilize these organisms as nanotopographically functionalized microparticles in the realm of biomedicine. In this study, we addressed this limitation by modulating the chemical composition of diatom microparticles by modulating the active silica metabolic uptake mechanism while maintaining their intricate three-dimensional architecture through calcium incorporation into living diatoms. Here, the diatom Thalassiosira weissflogii was chemically modified to replace its silica composition with a biodegradable calcium template, while simultaneously preserving the unique three-dimensional (3D) frustule structure with hierarchical patterns of pores and nanoscale architectural features, which was evident by the deposition of calcium as calcium carbonate. Calcium hydroxide is incorporated into the exoskeleton through the active mechanism of calcium uptake via a carbon-concentrating mechanism, without altering the microstructure. Our findings suggest that calcium-modified diatoms hold potential as a nature-inspired delivery system for immunotherapy through antibody-specific binding.


Subject(s)
Biocompatible Materials , Calcium , Diatoms , Materials Testing , Particle Size , Diatoms/metabolism , Diatoms/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/metabolism , Calcium/metabolism , Calcium/chemistry , Drug Delivery Systems , Surface Properties , Silicon Dioxide/chemistry , Porosity
3.
Mater Today Bio ; 25: 100977, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38322661

ABSTRACT

Although human tenocytes and dermal fibroblasts have shown promise in tendon engineering, no tissue engineered medicine has been developed due to the prolonged ex vivo time required to develop an implantable device. Considering that macromolecular crowding has the potential to substantially accelerate the development of functional tissue facsimiles, herein we compared human tenocyte and dermal fibroblast behaviour under standard and macromolecular crowding conditions to inform future studies in tendon engineering. Basic cell function analysis made apparent the innocuousness of macromolecular crowding for both cell types. Gene expression analysis of the without macromolecular crowding groups revealed expression of tendon related molecules in human dermal fibroblasts and tenocytes. Protein electrophoresis and immunocytochemistry analyses showed significantly increased and similar deposition of collagen fibres by macromolecular crowding in the two cell types. Proteomics analysis demonstrated great similarities between human tenocyte and dermal fibroblast cultures, as well as the induction of haemostatic, anti-microbial and tissue-protective proteins by macromolecular crowding in both cell populations. Collectively, these data rationalise the use of either human dermal fibroblasts or tenocytes in combination with macromolecular crowding in tendon engineering.

4.
FASEB J ; 37(12): e23272, 2023 12.
Article in English | MEDLINE | ID: mdl-37997495

ABSTRACT

Parkinson's disease (PD) is a progressive, neurodegenerative disorder with an increasing incidence, unknown etiology, and is currently incurable. Advances in understanding the pathological mechanisms at a molecular level have been slow, with little attention focused on the early prodromal phase of the disease. Consequently, the development of early-acting disease-modifying therapies has been hindered. The olfactory bulb (OB), the brain region responsible for initial processing of olfactory information, is particularly affected early in PD at both functional and molecular levels but there is little information on how the cells in this region are affected by disease. Organotypic and primary OB cultures were developed and characterized. These platforms were then used to assess the effects of 3,4-dihydroxyphenylacetylaldehyde (DOPAL), a metabolite of dopamine present in increased levels in post-mortem PD tissue and which is thought to contribute to PD pathogenesis. Our findings showed that DOPAL exposure can recapitulate many aspects of PD pathology. Oxidative stress, depolarization of mitochondrial membranes, and neurodegeneration were all induced by DOPAL addition, as were measured transcriptomic changes consistent with those reported in PD clinical studies. These olfactory models of prodromal disease lend credence to the catecholaldehyde hypothesis of PD and provide insight into the mechanisms by which the OB may be involved in disease progression.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , Olfactory Bulb/metabolism , Microphysiological Systems , Brain/metabolism , Dopamine/metabolism
5.
Article in English | MEDLINE | ID: mdl-37718477

ABSTRACT

There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated.

6.
ACS Appl Mater Interfaces ; 15(39): 45701-45712, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37737728

ABSTRACT

Electrical stimulation has been used successfully for several decades for the treatment of neurodegenerative disorders, including motor disorders, pain, and psychiatric disorders. These technologies typically rely on the modulation of neural activity through the focused delivery of electrical pulses. Recent research, however, has shown that electrically triggered neuromodulation can be further enhanced when coupled with optical stimulation, an approach that can benefit from the development of novel electrode materials that combine transparency with excellent electrochemical and biological performance. In this study, we describe an electrochemically modified, nanostructured indium tin oxide/poly(ethylene terephthalate) (ITO/PET) surface as a flexible, transparent, and cytocompatible electrode material. Electrochemical oxidation and reduction of ITO/PET electrodes in the presence of an ionic liquid based on d-glucopyranoside and bistriflamide units were performed, and the electrochemical behavior, conductivity, capacitance, charge transport processes, surface morphology, optical properties, and cytocompatibility were assessed in vitro. It has been shown that under selected conditions, electrochemically modified ITO/PET films remained transparent and highly conductive and were able to enhance neural cell survival and neurite outgrowth. Consequently, electrochemical modification of ITO/PET electrodes in the presence of an ionic liquid is introduced as an effective approach for tailoring the properties of ITO for advanced bio-optoelectronic applications.


Subject(s)
Ionic Liquids , Nanostructures , Humans , Oxidation-Reduction , Tin Compounds/chemistry
7.
Biomater Biosyst ; 11: 100079, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37720487

ABSTRACT

Due to their inherent plasticity, dermal fibroblasts hold great promise in regenerative medicine. Although biological signals have been well-established as potent regulators of dermal fibroblast function, it is still unclear whether physiochemical cues can induce dermal fibroblast trans-differentiation. Herein, we evaluated the combined effect of surface topography, substrate rigidity, collagen type I coating and macromolecular crowding in human dermal fibroblast cultures. Our data indicate that tissue culture plastic and collagen type I coating increased cell proliferation and metabolic activity. None of the assessed in vitro microenvironment modulators affected cell viability. Anisotropic surface topography induced bidirectional cell morphology, especially on more rigid (1,000 kPa and 130 kPa) substrates. Macromolecular crowding increased various collagen types, but not fibronectin, deposition. Macromolecular crowding induced globular extracellular matrix deposition, independently of the properties of the substrate. At day 14 (longest time point assessed), macromolecular crowding downregulated tenascin C (in 9 out of the 14 groups), aggrecan (in 13 out of the 14 groups), osteonectin (in 13 out of the 14 groups), and collagen type I (in all groups). Overall, our data suggest that physicochemical cues (such surface topography, substrate rigidity, collagen coating and macromolecular crowding) are not as potent as biological signals in inducing dermal fibroblast trans-differentiation.

8.
Adv Sci (Weinh) ; 10(27): e2301352, 2023 09.
Article in English | MEDLINE | ID: mdl-37518828

ABSTRACT

The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.


Subject(s)
Gliosis , Ion Channels , Rats , Animals , Ion Channels/metabolism , Ion Channels/pharmacology , Neuroglia/metabolism , Astrocytes/metabolism , Electrodes
9.
Front Bioeng Biotechnol ; 11: 1063063, 2023.
Article in English | MEDLINE | ID: mdl-36845172

ABSTRACT

Alternating current scanning electrochemical microscopy (AC-SECM) is a powerful tool for characterizing the electrochemical reactivity of surfaces. Here, perturbation in the sample is induced by the alternating current and altered local potential is measured by the SECM probe. This technique has been used to investigate many exotic a range of biological interfaces including live cells and tissues, as well as the corrosive degradation of various metallic surfaces, etc. In principle, AC-SECM imaging is derived from electrochemical impedance spectroscopy (EIS) which has been used for a century to describe interfacial and diffusive behaviour of molecules in solution or on a surface. Increasingly bioimpedance centric medical devices have become an important tool to detect evolution of tissue biochemistry. Predictive implications of measuring electrochemical changes within a tissue is one of the core concepts in developing minimally invasive and smart medical devices. In this study, cross sections of mice colon tissue were used for AC-SECM imaging. A 10 micron sized platinum probe was used for two-dimensional (2D) tan δ mapping of histological sections at a frequency of 10 kHz, Thereafter, multifrequency scans were performed at 100 Hz, 10 kHz, 300 kHz, and 900 kHz. Loss tangent (tan δ) mapping of mice colon revealed microscale regions within a tissue possessing a discrete tan δ signature. This tan δ map may be an immediate measure of physiological conditions in biological tissues. Multifrequency scans highlight subtle changes in protein or lipid composition as a function of frequency which was recorded as loss tangent maps. Impedance profile at different frequencies could also be used to identify optimal contrast for imaging and extracting the electrochemical signature specific for a tissue and its electrolyte.

10.
Biomater Adv ; 144: 213196, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455498

ABSTRACT

Modern bioengineering utilises biomimetic cell culture approaches to control cell fate during in vitro expansion. In this spirit, herein we assessed the influence of bidirectional surface topography, substrate rigidity, collagen type I coating and macromolecular crowding (MMC) in human bone marrow stem cell cultures. In the absence of MMC, surface topography was a strong modulator of cell morphology. MMC significantly increased extracellular matrix deposition, albeit in a globular manner, independently of the surface topography, substrate rigidity and collagen type I coating. Collagen type I coating significantly increased cell metabolic activity and none of the assessed parameters affected cell viability. At day 14, in the absence of MMC, none of the assessed genes was affected by surface topography, substrate rigidity and collagen type I coating, whilst in the presence of MMC, in general, collagen type I α1 chain, tenascin C, osteonectin, bone sialoprotein, aggrecan, cartilage oligomeric protein and runt-related transcription factor were downregulated. Interestingly, in the presence of the MMC, the 1000 kPa grooved substrate without collagen type I coating upregulated aggrecan, cartilage oligomeric protein, scleraxis homolog A, tenomodulin and thrombospondin 4, indicative of tenogenic differentiation. This study further supports the notion for multifactorial bioengineering to control cell fate in culture.


Subject(s)
Bone Marrow , Collagen Type I , Humans , Collagen Type I/metabolism , Aggrecans , Bone Marrow/metabolism , Cells, Cultured , Cell Culture Techniques
12.
Tissue Eng Part B Rev ; 28(3): 579-591, 2022 06.
Article in English | MEDLINE | ID: mdl-34088222

ABSTRACT

Many facets of tissue engineered models aim at understanding cellular mechanisms to recapitulate in vivo behavior, to study and mimic diseases for drug interventions, and to provide a better understanding toward improving regenerative medicine. Recent and rapid advances in stem cell biology, material science and engineering, have made the generation of complex engineered tissues much more attainable. One such tissue, human myocardium, is extremely intricate, with a number of different cell types. Recent studies have unraveled cardiac resident macrophages as a critical mediator for normal cardiac function. Macrophages within the heart exert phagocytosis and efferocytosis, facilitate electrical conduction, promote regeneration, and remove cardiac exophers to maintain homeostasis. These findings underpin the rationale of introducing macrophages to engineered heart tissue (EHT), to more aptly capitulate in vivo physiology. Despite the lack of studies using cardiac macrophages in vitro, there is enough evidence to accept that they will be key to making EHTs more physiologically relevant. In this review, we explore the rationale and feasibility of using macrophages as an additional cell source in engineered cardiac tissues. Impact statement Macrophages play a critical role in cardiac homeostasis and in disease. Over the past decade, we have come to understand the many vital roles played by cardiac resident macrophages in the heart, including immunosurveillance, regeneration, electrical conduction, and elimination of exophers. There is a need to improve our understanding of the resident macrophage population in the heart in vitro, to better recapitulate the myocardium through tissue engineered models. However, obtaining them in vitro remains a challenge. Here, we discuss the importance of cardiac resident macrophages and potential ways to obtain cardiac resident macrophages in vitro. Finally, we critically discuss their potential in realizing impactful in vitro models of cardiac tissue and their impact in the field.


Subject(s)
Heart , Tissue Engineering , Heart/physiology , Humans , Macrophages , Myocardium , Myocytes, Cardiac/physiology , Regenerative Medicine
13.
Adv Mater ; 33(40): e2008788, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34423493

ABSTRACT

Tendon disease constitutes an unmet clinical need and remains a critical challenge in the field of orthopaedic surgery. Innovative solutions are required to overcome the limitations of current tendon grafting approaches, and bioelectronic therapies show promise in treating musculoskeletal diseases, accelerating functional recovery through the activation of tissue regeneration-specific signaling pathways. Self-powered bioelectronic devices, particularly piezoelectric materials, represent a paradigm shift in biomedicine, negating the need for battery or external powering and complementing existing mechanotherapy to accelerate the repair processes. Here, the dynamic response of tendon cells to a piezoelectric collagen-analogue scaffold comprised of aligned nanoscale fibers made of the ferroelectric material poly(vinylidene fluoride-co-trifluoroethylene) is shown. It is demonstrated that motion-powered electromechanical stimulation of tendon tissue through piezo-bioelectric device results in ion channel modulation in vitro and regulates specific tissue regeneration signaling pathways. Finally, the potential of the piezo-bioelectronic device in modulating the progression of tendinopathy-associated processes in vivo, using a rat Achilles acute injury model is shown. This study indicates that electromechanical stimulation regulates mechanosensitive ion channel sensitivity and promotes tendon-specific over non-tenogenic tissue repair processes.


Subject(s)
Electronics , Ion Channels/metabolism , Tendons/physiology , Tissue Engineering/methods , Animals , Collagen/chemistry , Elastic Modulus , Electric Stimulation , Hydrocarbons, Fluorinated/chemistry , Rats , Regeneration/physiology , Signal Transduction , Tendons/cytology , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry , Vinyl Compounds/chemistry
14.
Adv Healthc Mater ; 10(17): e2100986, 2021 09.
Article in English | MEDLINE | ID: mdl-34235886

ABSTRACT

Ultrasound-powered implants (UPIs) represent cutting edge power sources for implantable medical devices (IMDs), as their powering strategy allows for extended functional lifetime, decreased size, increased implant depth, and improved biocompatibility. IMDs are limited by their reliance on batteries. While batteries proved a stable power supply, batteries feature relatively large sizes, limited life spans, and toxic material compositions. Accordingly, energy harvesting and wireless power transfer (WPT) strategies are attracting increasing attention by researchers as alternative reliable power sources. Piezoelectric energy scavenging has shown promise for low power applications. However, energy scavenging devices need be located near sources of movement, and the power stream may suffer from occasional interruptions. WPT overcomes such challenges by more stable, on-demand power to IMDs. Among the various forms of WPT, ultrasound powering offers distinct advantages such as low tissue-mediated attenuation, a higher approved safe dose (720 mW cm-2 ), and improved efficiency at smaller device sizes. This study presents and discusses the state-of-the-art in UPIs by reviewing piezoelectric materials and harvesting devices including lead-based inorganic, lead-free inorganic, and organic polymers. A comparative discussion is also presented of the functional material properties, architecture, and performance metrics, together with an overview of the applications where UPIs are being deployed.


Subject(s)
Electric Power Supplies , Prostheses and Implants , Movement , Ultrasonography
15.
Mater Sci Eng C Mater Biol Appl ; 121: 111857, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33579489

ABSTRACT

Biodegradable strain sensors able to undergo controlled degradation following implantation have recently received significant interest as novel approaches to detect pathological tissue swelling or non-physiological stresses. In this study, the physicomechanical, electrochemical and active pressure sensing behavior of an electrically conductive and biodegradable poly(glycerol sebacate urethane) (PGSU) composite, reinforced with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) functionalized carbon nanotubes (CNTs), was evaluated in vitro. Analysis of these PGSU-CNTs composites demonstrated that the incorporation of functionalized CNTs into a biodegradable elastomer resulted in enhanced mechanical strength, conductivity and tailored matrix biodegradation. PGSU-CNT composites were subsequently formulated into flexible and active pressure sensors which demonstrated optimal sensitivity to applied 1% uniaxial tensile strains. Finally, cytocompatibility analysis a with primary neural culture confirmed that PGSU-CNT composites exhibited low cytotoxicity, and supported neuron adhesion, viability, and proliferation in vitro.


Subject(s)
Nanotubes, Carbon , Bridged Bicyclo Compounds, Heterocyclic , Glycerol , Polymers , Urethane
16.
Sci Rep ; 11(1): 1295, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446813

ABSTRACT

By providing a bidirectional communication channel between neural tissues and a biomedical device, it is envisaged that neural interfaces will be fundamental in the future diagnosis and treatment of neurological disorders. Due to the mechanical mismatch between neural tissue and metallic neural electrodes, soft electrically conducting materials are of great benefit in promoting chronic device functionality. In this study, carbon nanotubes (CNT), silver nanowires (AgNW) and poly(hydroxymethyl 3,4-ethylenedioxythiophene) microspheres (MSP) were employed as conducting fillers within a poly(ε-decalactone) (EDL) matrix, to form a soft and electrically conducting composite. The effect of a filler type on the electrical percolation threshold, and composite biocompatibility was investigated in vitro. EDL-based composites exhibited favourable electrochemical characteristics: EDL/CNT-the lowest film resistance (1.2 ± 0.3 kΩ), EDL/AgNW-the highest charge storage capacity (10.7 ± 0.3 mC cm- 2), and EDL/MSP-the highest interphase capacitance (1478.4 ± 92.4 µF cm-2). All investigated composite surfaces were found to be biocompatible, and to reduce the presence of reactive astrocytes relative to control electrodes. The results of this work clearly demonstrated the ability of high aspect ratio structures to form an extended percolation network within a polyester matrix, resulting in the formulation of composites with advantageous mechanical, electrochemical and biocompatibility properties.


Subject(s)
Biocompatible Materials/chemistry , Lactones/chemistry , Nanotubes, Carbon/chemistry , Nanowires/chemistry , Polymers/chemistry , Animals , Astrocytes/cytology , Cells, Cultured , Electric Conductivity , Electrodes , Female , Neurons/cytology , Rats, Sprague-Dawley , Silver/chemistry , Thiophenes/chemistry
17.
Int J Mol Sci ; 21(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751908

ABSTRACT

This work reports the versatility of polydopamine (PD) when applied as a particle coating in a composite of polylactide (PLA). Polydopamine was observed to increase the particle-matrix interface strength and facilitate the adsorption of drugs to the material surface. Here, barium sulfate radiopaque particles were functionalized with polydopamine and integrated into a polylactide matrix, leading to the formulation of a biodegradable and X-ray opaque material with enhanced mechanical properties. Polydopamine functionalized barium sulfate particles also facilitated the adsorption and release of the antibiotic levofloxacin. Analysis of the antibacterial capacity of these composites and the metabolic activity and proliferation of human dermal fibroblasts in vitro demonstrated that these materials are non-cytotoxic and can be 3D printed to formulate complex biocompatible materials for bone fixation devices.


Subject(s)
Barium Sulfate/chemistry , Biocompatible Materials , Indoles/chemistry , Polyesters/chemistry , Polymers/chemistry , Tissue Engineering , Tissue Scaffolds , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Cells, Cultured , Drug Carriers/chemistry , Fibroblasts , Humans , Levofloxacin/pharmacology , Mechanical Phenomena
18.
ACS Nano ; 14(8): 10027-10044, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32658450

ABSTRACT

There is a pressing clinical need to develop cell-based bone therapies due to a lack of viable, autologous bone grafts and a growing demand for bone grafts in musculoskeletal surgery. Such therapies can be tissue engineered and cellular, such as osteoblasts, combined with a material scaffold. Because mesenchymal stem cells (MSCs) are both available and fast growing compared to mature osteoblasts, therapies that utilize these progenitor cells are particularly promising. We have developed a nanovibrational bioreactor that can convert MSCs into bone-forming osteoblasts in two- and three-dimensional, but the mechanisms involved in this osteoinduction process remain unclear. Here, to elucidate this mechanism, we use increasing vibrational amplitude, from 30 nm (N30) to 90 nm (N90) amplitudes at 1000 Hz and assess MSC metabolite, gene, and protein changes. These approaches reveal that dose-dependent changes occur in MSCs' responses to increased vibrational amplitude, particularly in adhesion and mechanosensitive ion channel expression and that energetic metabolic pathways are activated, leading to low-level reactive oxygen species (ROS) production and to low-level inflammation as well as to ROS- and inflammation-balancing pathways. These events are analogous to those that occur in the natural bone-healing processes. We have also developed a tissue engineered MSC-laden scaffold designed using cells' mechanical memory, driven by the stronger N90 stimulation. These mechanistic insights and cell-scaffold design are underpinned by a process that is free of inductive chemicals.


Subject(s)
Mesenchymal Stem Cells , Cell Differentiation , Humans , Inflammation , Osteogenesis , Reactive Oxygen Species , Tissue Engineering , Tissue Scaffolds
19.
Bioelectrochemistry ; 134: 107528, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32294615

ABSTRACT

Neuroinflammation is often associated with poor functional recovery and may contribute to or initiate the development of severe neurological disorders, such as epilepsy, Parkinson's disease or Alzheimer's disease. Ibuprofen (IBU), being one of the most commonly used non-steroidal anti-inflammatory drugs, is known to possess neuroprotective activity and serve as a promising therapeutic for the treatment of neuroinflammation. In this study, the potential of an IBU-loaded poly(3,4-ethylenedioxypyrrole) (PEDOP) matrix has been assessed as a neural interface material with an aim to control astrocyte activation and suppress neuroinflammation in vitro. Three types of drug immobilization protocols were investigated, leading to the fabrication of IBU-loaded PEDOP matrices exhibiting a broad spectrum of electrical characteristics, drug release profiles, as well as biological responses. Among all investigated PEDOP formulations, PEDOP matrices formed through a three-step immobilization protocol exhibited the highest charge storage capacity (30 ± 1 mC/cm2) as well as a double layer capacitance of 645.0 ± 51.1 µF, associated with a relatively enlarged surface area. Demonstrating a total drug loading capacity of 150 µg/ml and a release rate constant of 0.15 1/h, this coating formulation may be employed as a safe electrical conducting drug eluting system.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Astrocytes/drug effects , Astrocytes/pathology , Ibuprofen/chemistry , Ibuprofen/pharmacology , Pyrroles/chemistry , Drug Compounding , Drug Liberation
20.
ACS Biomater Sci Eng ; 6(3): 1449-1461, 2020 03 09.
Article in English | MEDLINE | ID: mdl-33455378

ABSTRACT

The brain machine interface (BMI) describes a group of technologies capable of communicating with excitable nervous tissue within the central nervous system (CNS). BMIs have seen major advances in recent years, but these advances have been impeded because of a temporal deterioration in the signal to noise ratio of recording electrodes following insertion into the CNS. This deterioration has been attributed to an intrinsic host tissue response, namely, reactive gliosis, which involves a complex series of immune mediators, resulting in implant encapsulation via the synthesis of pro-inflammatory signaling molecules and the recruitment of glial cells. There is a clinical need to reduce tissue encapsulation in situ and improve long-term neuroelectrode functionality. Physical modification of the electrode surface at the nanoscale could satisfy these requirements by integrating electrochemical and topographical signals to modulate neural cell behavior. In this study, commercially available platinum iridium (Pt/Ir) microelectrode probes were nanotopographically functionalized using femto/picosecond laser processing to generate laser-induced periodic surface structures (LIPSS). Three different topographies and their physical properties were assessed by scanning electron microscopy and atomic force microscopy. The electrochemical properties of these interfaces were investigated using electrochemical impedance spectroscopy and cyclic voltammetry. The in vitro response of mixed cortical cultures (embryonic rat E14/E17) was subsequently assessed by confocal microscopy, ELISA, and multiplex protein array analysis. Overall LIPSS features improved the electrochemical properties of the electrodes, promoted cell alignment, and modulated the expression of multiple ion channels involved in key neuronal functions.


Subject(s)
Astrocytes , Neuroglia , Animals , Iridium , Lasers , Microelectrodes , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...