Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
J Microbiol Methods ; 220: 106909, 2024 May.
Article in English | MEDLINE | ID: mdl-38432551

ABSTRACT

Escherichia coli are widely used by water quality managers as Fecal Indicator Bacteria, but current quantification methods do not differentiate them from benign, environmental Escherichia species such as E. marmotae (formerly named cryptic clade V) or E. ruysiae (cryptic clades III and IV). Reliable and specific techniques for their identification are required to avoid confounding microbial water quality assessments. To address this, a multiplex droplet digital PCR (ddPCR) assay targeting lipB (E. coli and E. ruysiae) and bglC (E. marmotae) was designed. The ddPCR performance was assessed using in silico analysis; genomic DNA from 40 local, international, and reference strains of target and non-target coliforms; and spiked water samples in a range relevant to water quality managers (1 to 1000 cells/100 mL). Results were compared to an analogous quantitative PCR (qPCR) and the Colilert method. Both PCR assays showed excellent sensitivity with a limit of detection of 0.05 pg/µL and 0.005 pg/µl for ddPCR and qPCR respectively, and of quantification of 0.5 pg/µL of genomic DNA. The ddPCR allowed differentiation and quantification of three Escherichia species per run by amplitude multiplexing and showed a high concordance with concentrations measured by Colilert once proportional bias was accounted for. In silico specificity testing underlined the possibility to further detect and distinguish Escherichia cryptic clade VI. Finally, the applicability of the ddPCR was successfully tested on environmental water samples where E. marmotae and E. ruysiae potentially confound E. coli counts based on the Most Probable Number method, highlighting the utility of this novel ddPCR as an efficient and rapid discriminatory test to improve water quality assessments.


Subject(s)
Bacteria , Escherichia coli , Real-Time Polymerase Chain Reaction/methods , Water Quality , DNA
2.
Microbiol Resour Announc ; 13(3): e0100723, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38376223

ABSTRACT

Escherichia coli is often used as a fecal indicator bacterium for water quality monitoring. We report the draft genome sequences of 500 Escherichia isolates including newly described Escherichia species, namely Escherichia marmotae, Escherichia ruysiae, and Escherichia whittamii, obtained from diverse environmental sources to assist with improved public health risk assessments.

3.
PLoS One ; 19(1): e0296290, 2024.
Article in English | MEDLINE | ID: mdl-38180967

ABSTRACT

Antimicrobial resistance is a global threat to human and animal health, with the misuse and overuse of antimicrobials suggested as the main drivers of resistance. Antimicrobial therapy can alter the bacterial community composition and the faecal resistome in cattle. Little is known about the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the presence of disease. Therefore, this study aimed to assess the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the pastoral farm environment, by analysing faecal samples from cattle impacted by several different clinically-defined conditions and corresponding antimicrobial treatments. Analysis at the individual animal level showed a decrease in bacterial diversity and richness during antimicrobial treatment but, in many cases, the microbiome diversity recovered post-treatment when the cow re-entered the milking herd. Perturbations in the microbiome composition and the ability of the microbiome to recover were specific at the individual animal level, highlighting that the animal is the main driver of variation. Other factors such as disease severity, the type and duration of antimicrobial treatment and changes in environmental factors may also impact the bovine faecal microbiome. AmpC-producing Escherichia coli were isolated from faeces collected during and post-treatment with ceftiofur from one cow while no third-generation cephalosporin resistant E. coli were isolated from the untreated cow samples. This isolation of genetically similar plasmid-mediated AmpC-producing E. coli has implications for the development and dissemination of antibiotic resistant bacteria and supports the reduction in the use of critically important antimicrobials.


Subject(s)
Anti-Infective Agents , Microbiota , Female , Humans , Cattle , Animals , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Feces
4.
Front Genet ; 14: 1225248, 2023.
Article in English | MEDLINE | ID: mdl-37636268

ABSTRACT

Whole genome sequencing has revolutionized infectious disease surveillance for tracking and monitoring the spread and evolution of pathogens. However, using a linear reference genome for genomic analyses may introduce biases, especially when studies are conducted on highly variable bacterial genomes of the same species. Pangenome graphs provide an efficient model for representing and analyzing multiple genomes and their variants as a graph structure that includes all types of variations. In this study, we present a practical bioinformatics pipeline that employs the PanGenome Graph Builder and the Variation Graph toolkit to build pangenomes from assembled genomes, align whole genome sequencing data and call variants against a graph reference. The pangenome graph enables the identification of structural variants, rearrangements, and small variants (e.g., single nucleotide polymorphisms and insertions/deletions) simultaneously. We demonstrate that using a pangenome graph, instead of a single linear reference genome, improves mapping rates and variant calling for both simulated and real datasets of the pathogen Neisseria meningitidis. Overall, pangenome graphs offer a promising approach for comparative genomics and comprehensive genetic variation analysis in infectious disease. Moreover, this innovative pipeline, leveraging pangenome graphs, can bridge variant analysis, genome assembly, population genetics, and evolutionary biology, expanding the reach of genomic understanding and applications.

5.
Nat Ecol Evol ; 7(10): 1693-1705, 2023 10.
Article in English | MEDLINE | ID: mdl-37640765

ABSTRACT

The kakapo is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations. We find associations for growth, disease susceptibility, clutch size and egg fertility within genic regions previously shown to influence these traits in other species. Finally, we generate breeding values to predict phenotype and illustrate that active management over the past 45 years has maintained both genome-wide diversity and diversity in breeding values and, hence, evolutionary potential. We provide new pathways for informing future conservation management decisions for kakapo, including prioritizing individuals for translocation and monitoring individuals with poor growth or high disease risk. Overall, by explicitly addressing the challenge of the small sample size, we provide a template for the inclusion of genomic data that will be transformational for species recovery efforts around the globe.


Subject(s)
Endangered Species , Parrots , Humans , Animals , Genomics , Genome , New Zealand
6.
Front Cell Infect Microbiol ; 13: 1178576, 2023.
Article in English | MEDLINE | ID: mdl-37284498

ABSTRACT

Cryptosporidiosis is a worldwide diarrheal disease caused by the protozoan Cryptosporidium. The primary symptom is diarrhea, but patients may exhibit different symptoms based on the species of the Cryptosporidium parasite they are infected with. Furthermore, some genotypes within species are more transmissible and apparently virulent than others. The mechanisms underpinning these differences are not understood, and an effective in vitro system for Cryptosporidium culture would help advance our understanding of these differences. Using COLO-680N cells, we employed flow cytometry and microscopy along with the C. parvum-specific antibody Sporo-Glo™ to characterize infected cells 48 h following an infection with C. parvum or C. hominis. The Cryptosporidium parvum-infected cells showed higher levels of signal using Sporo-Glo™ than C. hominis-infected cells, which was likely because Sporo-Glo™ was generated against C. parvum. We found a subset of cells from infected cultures that expressed a novel, dose-dependent auto-fluorescent signal that was detectable across a range of wavelengths. The population of cells that expressed this signal increased proportionately to the multiplicity of infection. The spectral cytometry results confirmed that the signature of this subset of host cells closely matched that of oocysts present in the infectious ecosystem, pointing to a parasitic origin. Present in both C. parvum and C. hominis cultures, we named this Sig M, and due to its distinct profile in cells from both infections, it could be a better marker for assessing Cryptosporidium infection in COLO-680N cells than Sporo-Glo™. We also noted Sig M's impact on Sporo-Glo™ detection as Sporo-Glo™ uses fluoroscein-isothiocynate, which is detected where Sig M also fluoresces. Lastly, we used NanoString nCounter® analysis to investigate the transcriptomic landscape for the two Cryptosporidium species, assessing the gene expression of 144 host and parasite genes. Despite the host gene expression being at high levels, the levels of putative intracellular Cryptosporidium gene expression were low, with no significant difference from controls, which could be, in part, explained by the abundance of uninfected cells present as determined by both Sporo-Glo™ and Sig M analyses. This study shows for the first time that a natural auto-fluorescent signal, Sig M, linked to Cryptosporidium infection can be detected in infected host cells without any fluorescent labeling strategies and that the COLO-680N cell line and spectral cytometry could be useful tools to advance the understanding of Cryptosporidium infectivity.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humans , Cryptosporidium/genetics , Cryptosporidium parvum/genetics , Cryptosporidiosis/epidemiology , Transcriptome , Coloring Agents , Ecosystem , Diarrhea/epidemiology
7.
Infect Genet Evol ; 112: 105456, 2023 08.
Article in English | MEDLINE | ID: mdl-37257800

ABSTRACT

Picobirnaviruses are double-stranded RNA viruses known from a wide range of host species and locations but with unknown pathogenicity and host relationships. Here, we examined the diversity of picobirnaviruses from cattle and gorillas within and around Bwindi Impenetrable Forest National Park (BIFNP), Uganda, where wild and domesticated animals and humans live in relatively close contact. We use metagenomic sequencing with bioinformatic analyses to examine genetic diversity. We compared our findings to global Picobirnavirus diversity using clustering-based analyses. Picobirnavirus diversity at Bwindi was high, with 14 near-complete RdRp and 15 capsid protein sequences, and 497 new partial viral sequences recovered from 44 gorilla samples and 664 from 16 cattle samples. Sequences were distributed throughout a phylogenetic tree of globally derived picobirnaviruses. The relationship with Picobirnavirus diversity and host taxonomy follows a similar pattern to the global dataset, generally lacking pattern with either host or geography.


Subject(s)
Picobirnavirus , Humans , Animals , Cattle , Picobirnavirus/genetics , Phylogeny , RNA, Double-Stranded/genetics , Gorilla gorilla , Animals, Domestic
8.
Article in English | MEDLINE | ID: mdl-37170869

ABSTRACT

Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order 'Christensenellales', were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6-99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae strains and had <88.1 % sequence identity to the closest type-strain sequence from Luoshenia tenuis NSJ-44T. The genome sequences of R-7T and WTE2008T had 83.6 % average nucleotide identity to each other, and taxonomic assignment using the Genome Taxonomy Database indicates these are separate species within a novel family of the order 'Christensenellales'. Cells of R-7T and WTE2008T lacked any obvious appendages and their cell wall ultra-structures were characteristic of Gram-negative bacteria. The five most abundant cellular fatty acids of both strains were C16 : 0, C16 : 0 iso, C17 : 0 anteiso, C18 : 0 and C15 : 0 anteiso. The strains used a wide range of the 23 soluble carbon sources tested, and grew best on cellobiose, but not on sugar-alcohols. Xylan and pectin were fermented by both strains, but not cellulose. Acetate, hydrogen, ethanol and lactate were the major fermentation end products. R-7T produced considerably more hydrogen than WTE2008T, which produced more lactate. Based on these analyses, Aristaeellaceae fam. nov. and Aristaeella gen. nov., with type species Aristaeella hokkaidonensis sp. nov., are proposed. Strains R-7T (=DSM 112795T=JCM 34733T) and WTE2008T (=DSM 112788T=JCM 34734T) are the proposed type strains for Aristaeella hokkaidonensis sp. nov. and Aristaeella lactis sp. nov., respectively.


Subject(s)
Fatty Acids , Rumen , Animals , Fatty Acids/chemistry , RNA, Ribosomal, 16S/genetics , Phylogeny , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Sequence Analysis, DNA , Gram-Negative Bacteria , Hydrogen
9.
BMC Plant Biol ; 23(1): 238, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147582

ABSTRACT

BACKGROUND: Tuber bruising in tetraploid potatoes (Solanum tuberosum) is a trait of economic importance, as it affects tubers' fitness for sale. Understanding the genetic components affecting tuber bruising is a key step in developing potato lines with increased resistance to bruising. As the tetraploid setting renders genetic analyses more complex, there is still much to learn about this complex phenotype. Here, we used capture sequencing data on a panel of half-sibling populations from a breeding programme to perform a genome-wide association analysis (GWAS) for tuber bruising. In addition, we collected transcriptomic data to enrich the GWAS results. However, there is currently no satisfactory method to represent both GWAS and transcriptomics analysis results in a single visualisation and to compare them with existing knowledge about the biological system under study. RESULTS: When investigating population structure, we found that the STRUCTURE algorithm yielded greater insights than discriminant analysis of principal components (DAPC). Importantly, we found that markers with the highest (though non-significant) association scores were consistent with previous findings on tuber bruising. In addition, new genomic regions were found to be associated with tuber bruising. The GWAS results were backed by the transcriptomics differential expression analysis. The differential expression notably highlighted for the first time the role of two genes involved in cellular strength and mechanical force sensing in tuber resistance to bruising. We proposed a new visualisation, the HIDECAN plot, to integrate the results from the genomics and transcriptomics analyses, along with previous knowledge about genomic regions and candidate genes associated with the trait. CONCLUSION: This study offers a unique genome-wide exploration of the genetic components of tuber bruising. The role of genetic components affecting cellular strength and resistance to physical force, as well as mechanosensing mechanisms, was highlighted for the first time in the context of tuber bruising. We showcase the usefulness of genomic data from breeding programmes in identifying genomic regions whose association with the trait of interest merit further investigation. We demonstrate how confidence in these discoveries and their biological relevance can be increased by integrating results from transcriptomics analyses. The newly proposed visualisation provides a clear framework to summarise of both genomics and transcriptomics analyses, and places them in the context of previous knowledge on the trait of interest.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Tetraploidy , Quantitative Trait Loci , Genome-Wide Association Study , Plant Breeding , Plant Tubers/metabolism , Phenotype
10.
Antibiotics (Basel) ; 12(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37107134

ABSTRACT

Accumulation of heavy metals (HMs) in agricultural soil following the application of superphosphate fertilisers seems to induce resistance of soil bacteria to HMs and appears to co-select for resistance to antibiotics (Ab). This study aimed to investigate the selection of co-resistance of soil bacteria to HMs and Ab in uncontaminated soil incubated for 6 weeks at 25 °C in laboratory microcosms spiked with ranges of concentrations of cadmium (Cd), zinc (Zn) and mercury (Hg). Co-selection of HM and Ab resistance was assessed using plate culture on media with a range of HM and Ab concentrations, and pollution-induced community tolerance (PICT) assays. Bacterial diversity was profiled via terminal restriction fragment length polymorphism (TRFLP) assay and 16S rDNA sequencing of genomic DNA isolated from selected microcosms. Based on sequence data, the microbial communities exposed to HMs were found to differ significantly compared to control microcosms with no added HM across a range of taxonomic levels.

11.
Microrna ; 12(2): 156-163, 2023.
Article in English | MEDLINE | ID: mdl-36733246

ABSTRACT

BACKGROUND: Chronic kidney disease of unknown etiology (CKDu) is reported among male paddy farmers in the dry zone of Sri Lanka. The exact cause of this disease remains undetermined. Genetic susceptibility is identified as a major risk factor for CKDu Objectives: In this study, small urinary RNAs were characterized in CKDu patients, healthy endemic and non-endemic controls. Differently expressed urinary miRNAs and their associated pathways were identified in the study population. METHODS: Healthy and diseased male volunteers (n = 9) were recruited from Girandurukotte (endemic) and Mawanella (non-endemic) districts. Urinary small RNAs were purified and sequenced using Illumina MiSeqTM. The sequence trace files were assembled and analyzed. Differentially ex-pressed miRNAs among these three groups were identified and pathway analysis was conducted. RESULTS: The urine samples contained 130,623 sequence reads identified as non-coding RNAs, PIWI-interacting RNAs (piRNA), and miRNAs. Approximately four percent of the total small RNA reads represented miRNA, and 29% represented piRNA. A total of 409 miRNA species were ex-pressed in urine. Interestingly, both diseased and endemic controls population showed significantly low expression of miRNA and piRNA. Regardless of the health status, the endemic population ex-pressed significantly low levels of miR-10a, miR-21, miR-148a, and miR-30a which have been linked with several environmental toxins Conclusion: Significant downregulation of miRNA and piRNA expression in both diseased and healthy endemic samples indicates an epigenetic regulation of CKDu involving genetic and environmental interaction. Further studies of specific miRNA species are required to develop a miRNA panel to identify individuals susceptible to CKDu.


Subject(s)
MicroRNAs , Renal Insufficiency, Chronic , Humans , Male , MicroRNAs/genetics , Chronic Kidney Diseases of Uncertain Etiology , Sri Lanka/epidemiology , Epigenesis, Genetic , Risk Factors , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/epidemiology
12.
Insects ; 14(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36662017

ABSTRACT

Insects that are freeze-tolerant start freezing at high sub-zero temperatures and produce small ice crystals. They do this using ice-nucleating agents that facilitate intercellular ice growth and prevent formation of large crystals where they can damage tissues. In Aotearoa/New Zealand the majority of cold adapted invertebrates studied survive freezing at any time of year, with ice formation beginning in the rich microbiome of the gut. Some freeze-tolerant insects are known to host symbiotic bacteria and/or fungi that produce ice-nucleating agents and we speculate that gut microbes of many New Zealand insects may provide ice-nucleating active compounds that moderate freezing. We consider too the possibility that evolutionary disparate freeze-tolerant insect species share gut microbes that are a source of ice-nucleating agents and so we describe potential transmission pathways of shared gut fauna. Despite more than 30 years of research into the freeze-tolerant mechanisms of Southern Hemisphere insects, the role of exogenous ice-nucleating agents has been neglected. Key traits of three New Zealand freeze-tolerant lineages are considered in light of the supercooling point (temperature of ice crystal formation) of microbial ice-nucleating particles, the initiation site of freezing, and the implications for invertebrate parasites. We outline approaches that could be used to investigate potential sources of ice-nucleating agents in freeze-tolerant insects and the tools employed to study insect microbiomes.

13.
Int J Infect Dis ; 128: 325-334, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36529370

ABSTRACT

OBJECTIVES: To assess whether having a pet in the home is a risk factor for community-acquired urinary tract infections associated with extended-spectrum ß-lactamase (ESBL)- or AmpC ß-lactamase (ACBL)- producing Enterobacterales. METHODS: An unmatched case-control study was conducted between August 2015 and September 2017. Cases (n = 141) were people with community-acquired urinary tract infection (UTI) caused by ESBL- or ACBL-producing Enterobacterales. Controls (n = 525) were recruited from the community. A telephone questionnaire on pet ownership and other factors was administered, and associations were assessed using logistic regression. RESULTS: Pet ownership was not associated with ESBL- or ACBL-producing Enterobacterales-related human UTIs. A positive association was observed for recent antimicrobial treatment, travel to Asia in the previous year, and a doctor's visit in the last 6 months. Among isolates with an ESBL-/ACBL-producing phenotype, 126/134 (94%) were Escherichia coli, with sequence type 131 being the most common (47/126). CONCLUSIONS: Companion animals in the home were not found to be associated with ESBL- or ACBL-producing Enterobacterales-related community-acquired UTIs in New Zealand. Risk factors included overseas travel, recent antibiotic use, and doctor visits.


Subject(s)
Community-Acquired Infections , Escherichia coli Infections , Urinary Tract Infections , Animals , Humans , Anti-Bacterial Agents/therapeutic use , beta-Lactamases/genetics , Case-Control Studies , Community-Acquired Infections/epidemiology , Community-Acquired Infections/microbiology , Escherichia coli , Escherichia coli Infections/epidemiology , New Zealand , Risk Factors , Urinary Tract Infections/epidemiology , Urinary Tract Infections/microbiology
14.
Metabolites ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36295898

ABSTRACT

During the early postnatal period, lambs have the ability to thermoregulate body temperature via non-shivering thermogenesis through brown adipose tissue (BAT), which soon after birth begins to transform into white adipose tissue. An RNA seq approach was used to characterize the transcriptome of BAT and thyroid tissue in newborn lambs exposed to cold conditions. Fifteen newborn Romney lambs were selected and divided into three groups: group 1 (n = 3) was a control, and groups 2 and 3 (n = 6 each) were kept indoors for two days at an ambient temperature (20-22 °C) or at a cold temperature (4 °C), respectively. Sequencing was performed using a paired-end strategy through the BGISEQ-500 platform, followed by the identification of differentially expressed genes using DESeq2 and an enrichment analysis by g:Profiler. This study provides an in-depth expression network of the main characters involved in the thermogenesis and fat-whitening mechanisms that take place in the newborn lamb. Data revealed no significant differential expression of key thermogenic factors such as uncoupling protein 1, suggesting that the heat production peak under cold exposure might occur so rapidly and in such an immediate way that it may seem undetectable in BAT by day three of life. Moreover, these changes in expression might indicate the start of the whitening process of the adipose tissue, concluding the non-shivering thermogenesis period.

15.
Animals (Basel) ; 12(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36290148

ABSTRACT

During cold exposure, brown adipose tissue (BAT) holds the key mechanism in the generation of heat, thus inducing thermogenic adaptation in response to cooler environmental changes. This process can lead to a major lipidome remodelling in BAT, where the increase in abundance of many lipid classes plays a significant role in the thermogenic mechanisms for heat production. This study aimed to identify different types of lipids, through liquid chromatography-mass spectrometry (LC-MS), in BAT and plasma during a short-term cold challenge (2-days), or not, in new-born lambs. Fifteen new-born Romney lambs were selected randomly and divided into three groups: Group 1 (n = 3) with BAT and plasma obtained within 24 h after birth, as a control; Group 2 (n = 6) kept indoors for two days at an ambient temperature (20-22 °C) and Group 3 (n = 6) kept indoors for two days at a cold temperature (4 °C). Significant differences in lipid composition of many lipid categories (such as glycerolipids, glycerophospholipids, sphingolipids and sterol lipids) were observed in BAT and plasma under cold conditions, compared with ambient conditions. Data obtained from the present study suggest that short-term cold exposure induces profound changes in BAT and plasma lipidome composition of new-born lambs, which may enhance lipid metabolism via BAT thermogenic activation and adipocyte survival during cold adaptation. Further analysis on the roles of these lipid changes, validation of potential biomarkers for BAT activity, such as LPC 18:1 and PC 35:6, should contribute to the improvement of new-born lamb survival. Collectively, these observations help broaden the knowledge on the variations of lipid composition during cold exposure.

16.
Front Microbiol ; 13: 960748, 2022.
Article in English | MEDLINE | ID: mdl-36033848

ABSTRACT

Antimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum ß-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic "One Health" approach to address.

17.
Microbiology (Reading) ; 168(8)2022 08.
Article in English | MEDLINE | ID: mdl-35960647

ABSTRACT

Resistance to antimicrobials is normally caused by mutations in the drug targets or genes involved in antimicrobial activation or expulsion. Here we show that an Escherichia coli strain, named DOC14, selected for increased resistance to the bile salt sodium deoxycholate, has no mutations in any ORF, but instead has a 2.1 Mb chromosomal inversion. The breakpoints of the inversion are two inverted copies of an IS5 element. Besides lowering deoxycholate susceptibility, the IS5-mediated chromosomal inversion in the DOC14 mutant was found to increase bacterial survival upon exposure to ampicillin and vancomycin, and sensitize the cell to ciprofloxacin and meropenem, but does not affect bacterial growth or cell morphology in a rich medium in the absence of antibacterial molecules. Overall, our findings support the notion that a large chromosomal inversion can benefit bacterial cells under certain conditions, contributing to genetic variability available for selection during evolution. The DOC14 mutant paired with its isogenic parental strain form a useful model as bacterial ancestors in evolution experiments to study how a large chromosomal inversion influences the evolutionary trajectory in response to various environmental stressors.


Subject(s)
Escherichia coli Infections , Escherichia coli , Anti-Bacterial Agents/pharmacology , Chromosome Inversion , Deoxycholic Acid/pharmacology , Drug Resistance, Bacterial , Escherichia coli Infections/microbiology , Humans , Microbial Sensitivity Tests
18.
Front Vet Sci ; 9: 940912, 2022.
Article in English | MEDLINE | ID: mdl-36016808

ABSTRACT

Klebsiella pneumoniae is a Gram-negative bacterium implicated as the causative pathogen in several medical health issues with different strains causing different pathologies including pneumonia, bloodstream infections, meningitis and infections from wounds or surgery. In this study, four captive African marmosets housed in Thailand were found dead. Necropsy and histology revealed congestion of hearts, kidneys and adrenal glands. Twenty-four bacterial isolates were obtained from these four animals with all isolates yielding identical phenotypes indicative of K. pneumoniae based on classical identification schema. All the isolates show the susceptibility to amikacin, cephalexin, doxycycline, gentamicin, and enrofloxacin with intermediate susceptibility to amoxycillin/clavulanic acid. One isolate (20P167W) was chosen for genome analysis and determined to belong to sequence type 65 (ST65). The genome of 20P167W possessed multiple virulence genes including mrk gene cluster and iro and iuc gene cluster (salmochelin and aerobactin, respectively) as well as multiple antibiotic resistance genes including bla SHV-67, bla SHV-11, oqxA, oqxB, and fosA genes resembling those found in human isolates; this isolate has a close genetic relationship with isolates from humans in Ireland, but not from Thailand and California sea lions. Phylogenetic studies using SNP show that there was no relation between genetic and geographic distributions of all known strains typing ST65, suggesting that ST65 strains may spread worldwide through multiple international transmission events rather than by local expansions in humans and/or animals. We also predict that K. pneumoniae ST65 has an ability to acquire genetic mobile element from other bacteria, which would allow Klebsiella to become an even greater public health concern.

19.
Infect Dis Poverty ; 11(1): 49, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35509037

ABSTRACT

BACKGROUND: Giardia intestinalis is one of the most common causes of diarrhoea worldwide. Molecular techniques have greatly improved our understanding of the taxonomy and epidemiology of this parasite. Co-infection with mixed (sub-) assemblages has been reported, however, Sanger sequencing is sometimes unable to identify shared subtypes between samples involved in the same epidemiologically linked event, due to samples showing multiple dominant subtypes within the same outbreak. Here, we aimed to use a metabarcoding approach to uncover the genetic diversity within samples from sporadic and outbreak cases of giardiasis to characterise the subtype diversity, and determine if there are common sequences shared by epidemiologically linked cases that are missed by Sanger sequencing. METHODS: We built a database with 1109 unique glutamate dehydrogenase (gdh) locus sequences covering most of the assemblages of G. intestinalis and used gdh metabarcoding to analyse 16 samples from sporadic and outbreak cases of giardiasis that occurred in New Zealand between 2010 and 2018. RESULTS: There is considerable diversity of subtypes of G. intestinalis present in each sample. The utilisation of metabarcoding enabled the identification of shared subtypes between samples from the same outbreak. Multiple variants were identified in 13 of 16 samples, with Assemblage B variants most common, and Assemblages E and A present in mixed infections. CONCLUSIONS: This study showed that G. intestinalis infections in humans are frequently mixed, with multiple subtypes present in each host. Shared sequences among epidemiologically linked cases not identified through Sanger sequencing were detected. Considering the variation in symptoms observed in cases of giardiasis, and the potential link between symptoms and (sub-) assemblages, the frequency of mixed infections could have implications for our understanding of host-pathogen interactions.


Subject(s)
Coinfection , Giardia lamblia , Giardiasis , Coinfection/epidemiology , Disease Outbreaks , Feces/parasitology , Genetic Variation , Genotype , Giardia lamblia/genetics , Giardiasis/epidemiology , Giardiasis/parasitology , Glutamate Dehydrogenase/genetics , Humans , New Zealand/epidemiology
20.
Appl Environ Microbiol ; 88(9): e0027722, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35442082

ABSTRACT

Generic Escherichia coli is commonly used as an indicator of fecal contamination to assess water quality and human health risk. Where measured E. coli exceedances occur, the presence of other pathogenic microorganisms, such as Shiga toxin-producing E. coli (STEC), is assumed, but confirmatory data are lacking. Putative E. coli isolates (n = 709) were isolated from water, sediment, soil, periphyton, and feces samples (n = 189) from five sites representing native forest and agricultural environments. Ten E. coli isolates (1.41%) were stx2 positive, 19 (2.7%) were eae positive, and stx1-positive isolates were absent. At the sample level, stx2-positive E. coli (5 of 189, 2.6%) and eae-positive isolates (16 of 189, 8.5%) were rare. Using real-time PCR, these STEC-associated virulence factors were determined to be more prevalent in sample enrichments (stx1, 23.9%; stx2, 31.4%; eae, 53.7%) and positively correlated with generic E. coli isolate numbers (P < 0.05) determined using culture-based methods. Whole-genome sequencing (WGS) was undertaken on a subset of 238 isolates with assemblies representing seven E. coli phylogroups (A, B1, B2, C, D, E, and F), 22 Escherichia marmotae isolates, and 1 Escherichia ruysiae isolate. Virulence factors, including those from extraintestinal pathogenic E. coli, were extremely diverse in isolates from the different locations and were more common in phylogroup B2. Analysis of the virulome from WGS data permitted the identification of gene repertoires that may be involved in environmental fitness and broadly align with phylogroup. Although recovery of STEC isolates was low, our molecular data indicate that they are likely to be widely present in environmental samples containing diverse E. coli phylogroups. IMPORTANCE This study takes a systematic sampling approach to assess the public health risk of Escherichia coli recovered from freshwater sites within forest and farmland. The New Zealand landscape is dominated by livestock farming, and previous work has demonstrated that "recreational exposure to water" is a risk factor for human infection by Shiga toxin-producing Escherichia coli (STEC). Though STEC isolates were rarely isolated from water samples, STEC-associated virulence factors were identified more commonly from water sample culture enrichments and were associated with increased generic E. coli concentrations. Whole-genome sequencing data from both E. coli and newly described Escherichia spp. demonstrated the presence of virulence factors from E. coli pathotypes, including extraintestinal pathogenic E. coli. This has significance for understanding and interpreting the potential health risk from E. coli where water quality is poor and suggests a role of virulence factors in survival and persistence of E. coli and Escherichia spp.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Escherichia coli Proteins/genetics , Feces , Humans , New Zealand , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...