Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 63(12): 30, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36445700

ABSTRACT

Purpose: Factor H (FH, encoded by CFH) prevents activation of the complement system's alternative pathway (AP) on host tissues. FH impedes C3 convertase (C3bBb) formation, accelerates C3bBb decay, and is a cofactor for factor I (FI)-catalyzed C3b cleavage. Numerous CFH variants are associated with age-related macular degeneration (AMD), but their functional consequences frequently remain undetermined. Here, we conduct functional comparisons between a control version of FH (not AMD linked) and 21 AMD-linked FH variants. Methods: Recombinantly produced, untagged, full-length FH versions were assayed for binding to C3b and decay acceleration of C3bBb using surface-plasmon resonance, FI-cofactor activity using a fluorescent probe of C3b integrity, suppression of C5b-9 assembly on an AP-activating surface, and inhibition of human AP-mediated lysis of sheep erythrocytes. Results: All versions were successfully purified despite below-average yields for Arg2Thr, Arg53Cys, Arg175Pro, Arg175Gln, Ile221Val, Tyr402His, Pro503Ala, Arg567Gly, Gly1194Asp, and Arg1210Cys. Compared to control FH, Arg2Thr, Leu3Val, Ser58Ala, Asp90Gly, Asp130Asn, Gln400Lys, Tyr402His, Gly650Val, Ser890Ile, and Thr965Met showed minimal functional differences. Arg1210C, Arg53His, Arg175Gln, Gly1194Asp, Pro503Ala, Arg53Cys, Arg576Gly, and Arg175Pro (in order of decreasing efficacy) underperformed, while Ile221Val, Arg303Gln, and Arg303Trp were "marginal." We newly identified variants toward the center of the molecule, Pro503Ala and Arg567Gly, as potentially pathogenic. Conclusions: Our approach could be extended to other variants of uncertain significance and to assays for noncanonical FH activities, aiming to facilitate selection of cohorts most likely to benefit from therapeutic FH. This is timely as recombinant therapeutic FH is in development for intravitreal treatment of AMD in patients with reduced FH functionality.


Subject(s)
Complement Factor H , Macular Degeneration , Animals , Humans , Acceleration , Complement Factor H/genetics , Complement Membrane Attack Complex , Complement System Proteins , Macular Degeneration/genetics , Sheep
2.
Curr Eye Res ; 47(7): 1087-1093, 2022 07.
Article in English | MEDLINE | ID: mdl-35282732

ABSTRACT

PURPOSE: GEM103 is a recombinantly produced full-length version of the human complement factor H (CFH) under clinical investigation for treatment of age-related macular degeneration (AMD) in individuals carrying an AMD risk-associated genetic variant of CFH. This study aimed to investigate the complement pathway-related functions of GEM103 in comparison with those of native human CFH. METHODS: Key biological activities of GEM103 and human serum-derived CFH (sdCFH) were compared using four independent functional assays. Assays of C3b binding and C3 convertase decay-accelerating activity (DAA) were performed by surface plasmon resonance (SPR). Cofactor activity (CA) was measured using 8-anilinonaphthalene-1-sulfonic acid as a fluorescent probe of C3b integrity. The abilities of GEM103 and sdCFH to protect sheep erythrocytes from hemolysis by CFH-depleted normal human serum were assessed colorimetrically. RESULTS: In multiple SPR-based assays of C3b binding and DAA, the performance of GEM103 was consistently comparable to that of sdCFH across a range of matching concentrations. The EC50 ± SD in the fluorescence-based fluid-phase CA assay was 0.21 ± 0.06 µM for GEM103 compared to 0.20 ± 0.09 µM for sdCFH. In hemolysis assays, the EC50 value of 0.33 ± 0.16 µM for GEM103 versus 0.46 ± 0.06 µM for sdCFH were not significantly different (p = 0.81). CONCLUSIONS: GEM103, a recombinant CFH developed by Gemini Therapeutics, shows activity profiles comparable to sdCFH in all complement-related assays employed in this study, suggesting that GEM103 is equivalent to the native glycoprotein in terms of its in vitro functional activity. These results support further study of GEM103 as a potential therapy for AMD.


Subject(s)
Complement Factor H , Macular Degeneration , Animals , Complement Factor H/genetics , Complement Factor H/metabolism , Hemolysis , Humans , Macular Degeneration/drug therapy , Macular Degeneration/genetics , Macular Degeneration/metabolism , Polymorphism, Single Nucleotide , Sheep
3.
J Immunol ; 205(7): 1778-1786, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32848031

ABSTRACT

The complement system plays an important role in our innate immune system. Complement activation results in clearance of pathogens, immune complex, and apoptotic cells. The host is protected from complement-mediated damage by several complement regulators. Factor H (FH) is the most important fluid-phase regulator of the alternative pathway of the complement system. Heterozygous mutations in FH are associated with complement-related diseases such as atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration. We recently described an agonistic anti-FH mAb that can potentiate the regulatory function of FH. This Ab could serve as a potential new drug for aHUS patients and alternative to C5 blockade by eculizumab. However, it is unclear whether this Ab can potentiate FH mutant variants in addition to wild-type (WT) FH. In this study, the functionality and potential of the agonistic Ab in the context of pathogenic aHUS-related FH mutant proteins was investigated. The binding affinity of recombinant WT FH and the FH variants, W1183L, V1197A, R1210C, and G1194D to C3b was increased upon addition of the potentiating Ab and similarly, the decay-accelerating activity of all mutants is increased. The potentiating anti-FH Ab is able to restore the surface regulatory function of most of the tested FH mutants to WT FH levels on a human HAP-1 cell line and on sheep erythrocytes. In conclusion, our potentiating anti-FH is broadly active and able to enhance both WT FH function as well as most aHUS-associated FH variants tested in this study.


Subject(s)
Antibodies/metabolism , Atypical Hemolytic Uremic Syndrome/genetics , Complement C3b/metabolism , Complement Factor H/immunology , Genotype , Animals , Cell Line , Complement Activation , Complement Factor H/agonists , Complement Factor H/genetics , Genetic Predisposition to Disease , Humans , Mice , Mutation/genetics , Polymorphism, Genetic , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...