Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398560

ABSTRACT

The proposed broadband attached proton test sequence allows the user to easily record 13C nuclear magnetic resonance multiplicity-edited and quaternary-carbon-only spectra. Compared to earlier attached proton test experiments, it preserves both a tolerance for wide ranges of one-bond-coupling constant values and the effective suppression of residual CHn signals in the quaternary-carbon-only spectra. The recording of edited spectra or quaternary-carbon-only spectra is made easy by a single, user-controllable constant. These attributes make the broadband attached proton test experiment attractive for the 13C analysis of small molecules, including spectral editing, particularly in high-throughput analysis laboratories.

2.
Molecules ; 26(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201221

ABSTRACT

We propose a new 13C DEPTQ+ NMR experiment, based on the improved DEPTQ experiment, which is designed to unequivocally identify all carbon multiplicities (Cq, CH, CH2, and CH3) in two experiments. Compared to this improved DEPTQ experiment, the DEPTQ+ is shorter and the different evolution delays are designed as spin echoes, which can be tuned to different 1JCH values; this is especially valuable when a large range of 1JCH coupling constants is to be expected. These modifications allow (i) a mutual leveling of the DEPT signal intensities, (ii) a reduction in J cross-talk in the Cq/CH spectrum, and (iii) more consistent and cleaner CH2/CH3 edited spectra. The new DEPTQ+ is expected to be attractive for fast 13C analysis of small-to medium sized molecules, especially in high-throughput laboratories. With concentrated samples and/or by exploiting the high sensitivity of cryogenically cooled 13C NMR probeheads, the efficacy of such investigations may be improved, as it is possible to unequivocally identify all carbon multiplicities, with only one scan, for each of the two independent DEPTQ+ experiments and without loss of quality.

3.
Magn Reson Chem ; 59(1): 52-60, 2021 01.
Article in English | MEDLINE | ID: mdl-33411358

ABSTRACT

Long-range heteronuclear single quantum correlation (LR-HSQC) experiments may be applied for detecting long-range correlations but suffer from two disadvantages, common to all heteronuclear long-range correlation experiments: (i) The information density in LR-HSQC spectra may be too high to be used directly without "filtering out" shorter range correlations, and (ii) often, substantial differences in intensity among cross peaks exist, potentially hampering the visualization of weak, often crucial cross peaks. In this contribution, we propose a modified LR-HSQC experiment, the LR-HTQC experiment (Long-Range Heteronuclear Triple Quantum Correlation) that partially solves the problems aforementioned. We show theoretically and experimentally that the LR-HTQC experiment removes the intense cross peaks of CH spin pairs, substantially reduces the medium intensity of cross peaks originating from CHH' spin systems, whereas the typically weak intensity of cross peaks of CHH'H″ and C(H)n, n > 3 spin systems is less affected. Consequently, the LR-HTQC experiment affords simplified long-range heteronuclear shift correlation spectra and scales down large intensity differences among different types of cross peaks, although a certain general reduction of signal intensities has to be accepted.

4.
Magn Reson Chem ; 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30499122

ABSTRACT

The long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) experiment is the experiment of choice for visualizing heteronuclear long-range coupling interactions n JCH across 4-6-bonds and is experimentally superior to the decoupled heteronuclear multiple-bond correlation (D-HMBC) experiment. Yet, the exact reasons have not been fully understood and established. On the basis of our recent investigation of the nonrefocused variants LR-HSQC and HMBC, we have extended a JHH' -dedicated investigation to the D-HMBC and LR-HSQMBC experiments. Unlike the nonrefocused variants, the influence of homonuclear couplings JHH' on the intensity of long-range n JCH cross-peaks is not easily predictable and may be summarized as follows: (a) irrespective of the magnitude and number of JHH' interactions long-range n JCH cross-peaks are more intense in D-HMBC spectra as long as the evolution delay Δ is not too large, because in contrast to LR-HSQMBC no JHH' -caused intensity zeroes will occur. (b) If JHH' is small and Δ large, the intensity of cross peaks in D-HMBC spectra may be weakened or may even vanish at Δ = (0.25+0.5k)/JHH ', whereas for the LR-HSQMBC this unwanted effect occurs at Δ = k + 0.5/JHH' . Consequently, when Δ is adjusted to visualize weak n JCH long-range correlations, our findings corroborate that there are potentially more cross-peaks expected to show up in a LR-HSQMBC spectrum compared with a D-HMBC spectrum. This has been indeed noticed experimentally, even though the intensity of a many long-range n JCH cross-peaks may still be higher in the spectra of the D-HMBC experiment correspondingly adjusted for detecting weak n JCH correlations.

5.
Magn Reson Chem ; 56(11): 1101-1116, 2018 11.
Article in English | MEDLINE | ID: mdl-29907970

ABSTRACT

Long-range heteronuclear single quantum correlation (LR-HSQC) experiments may be applied as an alternative to heteronuclear multiple-bond correlation (HMBC) experiments for detecting long-range correlations but has never enjoyed popularity for that purpose. To the best of our knowledge, the exact reasons have not yet been fully established. For both experiments, it is widely accepted that the evolution of proton-proton homonuclear couplings JHH' during the polarization transfer delays Δ leads to significant losses, and that the intensity of the observable coherence is zero when JHH' matches the condition Δ = 0.5/JHH' . Here, we analyze the influence of JHH' on the intensity of long-range correlations in HMBC and LR-HSQC spectra. We show that for both experiments long-range correlations will not be canceled because of homonuclear couplings JHH' . Our theoretical and experimental results definitely establish and validate the superiority of HMBC-based experiments among the family of heteronuclear long-range correlation experiments: (a) the overall cross peak's intensity is higher, and (b) in LR-HSQC experiments, the intensity of the long-range cross peaks is additionally influenced in an unwanted way by the magnitude and number of passive homonuclear proton-proton couplings JHH' .

6.
Magn Reson Chem ; 56(5): 329-337, 2018 05.
Article in English | MEDLINE | ID: mdl-29336081

ABSTRACT

In this contribution, we show that the magnitude of heteronuclear long-range coupling constants can be directly extracted from the classical 1D HMBC spectra, as all multiplet lines of a cross-peak always and exclusively vanish for the condition Δ = k/n JCH . To the best of our knowledge, this feature of the classical HMBC has not yet been noticed and exploited. This condition holds true, irrespective of the magnitude and numbers of additional active and passive homonuclear n JHH' couplings. Alternatively, the n JCH value may also be evaluated by fitting the peak's intensity in the individual spectra to its simple sin(πn JCH Δ)exp(-Δ/T2eff ) dependence. Compared to the previously proposed J-HMBC sequences that also use the variation of the cross-peak's intensity for extracting the coupling constants, the classical HMBC pulse sequence is significantly more sensitive.

7.
J Phys Chem B ; 117(23): 6990-7001, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23687989

ABSTRACT

Aggregation and membrane penetration of porphyrinic photosensitizers play crucial roles for their efficacy in photodynamic therapy. The current study was aimed at comparing the aggregation behavior of selected photosensitizers and correlating it with membrane affinity. Self-assembling properties of 15 amphiphilic free-base chlorin and porphyrin derivatives bearing carboxylate substituents were studied in phosphate buffered saline (PBS) by (1)H NMR spectroscopy, making use of ring current induced aggregation shifts. All compounds exhibited aggregation in PBS to a different degree with dimers or oligomers showing slow aggregate growth over time. Aggregate structures were proposed on the basis of temperature dependent chemical shift changes. All chlorin compounds revealed similar aggregation maps with their hydrophobic sides overlapping and their carboxylate groups protruding toward the exterior. In contrast, for the porphyrin compounds, the carboxylate groups were located in overlapping regions. Membrane interactions were probed using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer vesicles and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micelles as models. The chlorin derivatives had higher membrane affinity and were all monomerized by DHPC micelles as opposed to the porphyrin compounds. The observed differences were attributed to the different aggregate structures proposed for the chlorin and porphyrin derivatives. Free accessibility of the carboxylate groups seemed to promote initial surface interaction with phospholipid bilayers and micelles.


Subject(s)
Photosensitizing Agents/chemistry , Porphyrins/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Micelles , Temperature
8.
Anal Chem ; 85(8): 3822-7, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23537072

ABSTRACT

The feasibility of (1)H-High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy for the direct analysis of viscous cosmetic and pharmaceutical formulations such as creams, gels, and pastes is presented. Three examples are described: (i) the detection of chitosan in toothpaste, (ii) the analysis of dexamethasone acetate (DMA) in a cream, and (iii) the analysis of the local anesthetics, lidocaine and prilocaine, in a gel and a cream. All active components could be directly detected in their original commercial formulations without the need for laborious sample preparation steps. In addition, the possibility for HR-MAS-based quantifications and the analysis of dynamic properties of active components in different formulations applying HR-MAS diffusion-ordered NMR spectroscopy are shown.


Subject(s)
Anesthetics, Local/analysis , Chitosan/analysis , Cosmetics/chemistry , Dexamethasone/analogs & derivatives , Magnetic Resonance Spectroscopy/methods , Toothpastes/chemistry , Dexamethasone/analysis , Gels , Lidocaine/analysis , Magnetic Resonance Spectroscopy/instrumentation , Prilocaine/analysis , Skin Cream/chemistry , Viscosity
9.
J Org Chem ; 78(4): 1553-8, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23330643

ABSTRACT

The triethylborane-methanol system used in radical deoxygenation and dehalogenation processes has been investigated. Unambiguous evidence for the formation of a complex between triethylborane and methanol is provided. It was shown that the complexation process is exothermic (ΔH° ≈ -7.6 kcal mol(-1)) while being entropically disfavored (ΔS° ≈ -24 cal mol(-1) K(-1)). This study demonstrates that only very small quantities of complex (1-2%) are present in most of the reported conditions used in dehalogenation and deoxygenation processes. Recalculating the rate constant for the hydrogen transfer to a secondary alkyl radical with this concentration suggests a value in the 10(6) M(-1) s(-1) range for the complex itself, indicating a much more important activation of the O-H bond than previously thought. The importance of solvent effects is also highlighted. The formation of a larger amount of complex by the addition of methanol is accompanied by its deactivation via hydrogen bonding. These observations open new opportunitites for the future preparation of more effective hydrogen atom donors involving borane complexes.

10.
Science ; 335(6074): 1348-51, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22422982

ABSTRACT

Strigolactones, phytohormones with diverse signaling activities, have a common structure consisting of two lactones connected by an enol-ether bridge. Strigolactones derive from carotenoids via a pathway involving the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8) and the iron-binding protein D27. We show that D27 is a ß-carotene isomerase that converts all-trans-ß-carotene into 9-cis-ß-carotene, which is cleaved by CCD7 into a 9-cis-configured aldehyde. CCD8 incorporates three oxygens into 9-cis-ß-apo-10'-carotenal and performs molecular rearrangement, linking carotenoids with strigolactones and producing carlactone, a compound with strigolactone-like biological activities. Knowledge of the structure of carlactone will be crucial for understanding the biology of strigolactones and may have applications in combating parasitic weeds.


Subject(s)
Arabidopsis/metabolism , Lactones/metabolism , Oryza/metabolism , Pisum sativum/metabolism , Plant Growth Regulators/biosynthesis , beta Carotene/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biosynthetic Pathways , Carotenoids/chemistry , Carotenoids/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Germination , Isomerases/genetics , Isomerases/metabolism , Lactones/chemistry , Lactones/pharmacology , Molecular Structure , Mutation , Oryza/genetics , Pisum sativum/genetics , Phenotype , Plant Growth Regulators/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Stereoisomerism , Striga/growth & development
11.
Biochim Biophys Acta ; 1808(6): 1661-72, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21334303

ABSTRACT

Membrane interactions of porphyrinic photosensitizers (PSs) are known to play a crucial role for PS efficiency in photodynamic therapy (PDT). In the current paper, the interactions between 15 different porphyrinic PSs with various hydrophilic/lipophilic properties and phospholipid bilayers were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. PS-membrane interactions were deduced from analysis of the main DOPC 1H-NMR resonances (choline and lipid chain signals). Initial membrane adsorption of the PSs was indicated by induced changes to the DOPC choline signal, i.e. a split into inner and outer choline peaks. Based on this parameter, the PSs could be classified into two groups, Type-A PSs causing a split and the Type-B PSs causing no split. A further classification into two subgroups each, A1, A2 and B1, B2 was based on the observed time-dependent changes of the main DOPC NMR signals following initial PS adsorption. Four different time-correlated patterns were found indicating different levels and rates of PS penetration into the hydrophobic membrane interior. The type of interaction was mainly affected by the amphiphilicity and the overall lipophilicity of the applied PS structures. In conclusion, the NMR data provided valuable structural and dynamic insights into the PS-membrane interactions which allow deriving the structural constraints for high membrane affinity and high membrane penetration of a given PS.


Subject(s)
Lipid Bilayers/chemistry , Phospholipids/chemistry , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Binding, Competitive , Hydrophobic and Hydrophilic Interactions , Kinetics , Lipid Bilayers/metabolism , Models, Chemical , Models, Molecular , Phosphatidylcholines/chemistry , Phospholipids/metabolism , Photosensitizing Agents/metabolism , Porphyrins/metabolism , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
12.
Langmuir ; 26(13): 11085-94, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20420428

ABSTRACT

The pH-dependent membrane adsorption and distribution of three chlorin derivatives, chlorin e6 (CE), rhodin G7 (RG), and monoaspartyl-chlorin e6 (MACE), in the physiological pH range (pH 6-8) were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. The chlorin derivatives were characterized with respect to their aggregation behavior, the pK(a) values of individual carboxylate groups, the extent of membrane adsorption, and their flip-flop rates across the bilayer membrane for pH 6-8. External membrane adsorption was found to be lower for RG than for CE and MACE. Both electrostatic interactions and the extent of aggregation seemed to be the main determinants of membrane adsorption. Rate constants for chlorin transfer across the membrane were found to correlate strongly with the pH of the surrounding medium, in particular, for CE and RG. In acidic solution, CE and RG transfer across the membrane was strongly accelerated, and in basic solution, all compounds were retained, mostly in the outer monolayer. In contrast, MACE flip-flop across the membrane remained very low even at pH 6. The protonation of ionizable groups is suggested to be a major determinant of chlorin transfer rates across the bilayer. pK(a) values of CE and RG were found to be between 6 and 8, and two of the carboxylate groups in MACE had pK(a) values below 6. For CE and RG, the kinetic profiles at acidic pH indicated that the initial fast membrane distribution was followed by secondary steps that are discussed in this article.


Subject(s)
Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Phospholipids/chemistry , Porphyrins/chemistry , Chlorophyllides , Hydrogen-Ion Concentration , Phosphatidylcholines/chemistry , Unilamellar Liposomes/chemistry
13.
FEBS J ; 276(19): 5416-31, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19703230

ABSTRACT

Retinoids are C(20) apocarotenoids that have various important functions in metazoans. In addition, several findings suggest their occurrence in eubacteria, including cyanobacteria. It has been shown that the Synechocystis cytochrome P450 enzyme CYP120A1 is a retinoic acid-binding polypeptide. In this work, we determined the reaction catalyzed by CYP120A1 and investigated its substrate specificity in vitro. CYP120A1-containing microsomes generated in yeast converted all-trans-retinoic acid into a compound exhibiting higher polarity in HPLC analysis. Liquid chromatography-MS analysis suggested the introduction of a single hydroxyl group, and NMR analysis of the purified product revealed C16 or C17 as the reaction site. Incubations with cis-retinoic acids, retinal, 3(R)-OH-retinal, retinol, beta-apo-13-carotenone (C(18)) and beta-apo-14'-carotenal (C(22)) resulted in the formation of the corresponding hydroxyl derivatives, as suggested by HPLC and liquid chromatography-MS analyses. Comparisons of the relative product amounts revealed the highest conversion rate for all-trans-retinoic acid, followed by beta-apo-13-carotenone (C(18)). As shown by real-time RT-PCR, CYP120A1 is expressed under normal growth conditions and is slightly induced by high-intensity light. Our work provides the first enzymatic study of a cyanobacterial cytochrome P450, showing it to be the first nonanimal retinoic acid-metabolizing enzyme characterized so far. Moreover, the CYP120A1-catalyzed reaction represents a novel modification of retinoids.


Subject(s)
Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Synechocystis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Catalytic Domain , Chromatography, High Pressure Liquid , Chromatography, Liquid , Cloning, Molecular , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , DNA, Bacterial/genetics , Gene Expression , Genes, Bacterial , Mass Spectrometry , Nuclear Magnetic Resonance, Biomolecular , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retinoids/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Saccharomyces cerevisiae/genetics , Species Specificity , Substrate Specificity , Synechocystis/genetics , Tretinoin/metabolism
14.
J Pharm Biomed Anal ; 49(4): 1060-4, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19211212

ABSTRACT

For improving the identification of potential heparin impurities such as oversulfated chondroitin sulfate (OSCS) the standard 2D (1)H-(1)H NMR NOESY was applied. Taking advantage of spin diffusion and adjusting the experimental parameters accordingly additional contaminant-specific signals of the corresponding sugar ring protons can easily be detected. These are usually hidden by the more intense heparin signals. Compared to the current 1D (1)H procedure proposed for screening commercial unfractionated heparin samples and focusing on the contaminants acetyl signals more informative and unique fingerprints may be obtained. Correspondingly measured (1)H fingerprints of a few potential impurities are given and their identification in two contaminated commercial heparin samples is demonstrated. The proposed 2D NOESY method is not intended to replace the current 1D method for detecting and quantifying heparin impurities but may be regarded as a valuable supplement for an improved and more reliable identification of these contaminants.


Subject(s)
Anticoagulants/analysis , Heparin/analysis , Acylation , Dermatan Sulfate/analysis , Drug Contamination , Indicators and Reagents , Magnetic Resonance Spectroscopy , Mass Spectrometry , Sulfates/analysis
15.
Langmuir ; 24(21): 12521-33, 2008 Nov 04.
Article in English | MEDLINE | ID: mdl-18823137

ABSTRACT

The distribution processes of chlorin e6 (CE) and monoaspartyl-chlorin e6 (MACE) between the outer and inner phospholipid monolayers of 1,2-dioleoyl-phosphatidylcholine (DOPC) vesicles were monitored by 1H NMR spectroscopy through analysis of chemical shifts and line widths of the DOPC vesicle resonances. Chlorin adsorption to the outer vesicle monolayer induced changes in the DOPC 1H NMR spectrum. Most pronounced was a split of the N-methyl choline resonance, allowing for separate analysis of inner and outer vesicle layers. Transbilayer distribution of the chlorin compounds was indicated by time-dependent characteristic spectral changes of the DOPC resonances. Kinetic parameters for the flip-flop processes, that is, half-lives and rate constants, were obtained from the experimental data points. In comparison to CE, MACE transbilayer movement was significantly reduced, with MACE remaining more or less attached to the outer membrane layer. The distribution coefficients for CE and MACE between the vesicular and aqueous phase were determined. Both CE and MACE exhibited a high affinity for the vesicular phase. For CE, a positive correlation was found between transfer rate and increasing molar ratio CE/DOPC. Enhanced membrane rigidity induced by increasing amounts of cholesterol into the model membrane was accompanied by a decrease of CE flip-flop rates across the membrane. The present study shows that the movement of porphyrins across membranes can efficiently be investigated by 1H NMR spectroscopy and that small changes in porphyrin structure can have large effects on membrane kinetics.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Phospholipids/chemistry , Porphyrins/chemistry , Chlorophyllides
16.
Magn Reson Chem ; 45(6): 469-72, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17440901

ABSTRACT

An improved version of the DEPTQ experiment yielding the signal and multiplicity information for all carbon types including the signals of quaternary carbons is proposed. It encompasses all the known advantages of the basic DEPT experiment. In comparison to the original version, signals of the sensitivity-limiting quaternary carbons are markedly increased: the initial 13C pulse may be adjusted to the Ernst angle, the NOE build-up period is prolonged by the split relaxation delay and a partial recovery of signal losses due to instrumental imperfections is achieved by the incorporation of composite adiabatic 13C refocussing pulses. Furthermore, pure absorption lineshapes for all carbon types are obtained with only one single scan. These attributes make this experiment attractive for 13C analysis of small molecules (including spectral editing), particularly in high-throughput analysis laboratories.


Subject(s)
Carbon/chemistry , Magnetic Resonance Spectroscopy/methods , Carbon Isotopes , Ibuprofen , Propionates/chemistry , Sensitivity and Specificity
17.
J Agric Food Chem ; 53(9): 3408-14, 2005 May 04.
Article in English | MEDLINE | ID: mdl-15853380

ABSTRACT

One gram of onion added to the food of rats inhibits significantly (p < 0.05) bone resorption as assessed by the urinary excretion of tritium released from bone of 9-week-old rats prelabeled with tritiated tetracycline from weeks 1 to 6. To isolate and identify the bone resorption inhibiting compound from onion, onion powder was extracted and the extract fractionated by column chromatography and medium-pressure liquid chromatography. A single active peak was finally obtained by semipreparative high-performance liquid chromatography. The biological activity of the various fractions was tested in vitro on the activity of osteoclasts to form resorption pits on a mineralized substrate. Medium, containing the various fractions or the pure compound, was added to osteoclasts of new-born rats settled on ivory slices. After 24 h of incubation, the tartrate-resistant acid phosphatase positive multinucleated cells, that is, osteoclasts, were counted. Subsequently, the number of resorption pits was determined. Activity was calculated as the ratio of resorption pits/osteoclasts and was compared to a negative control, that is, medium containing 10% fetal bovine serum only and to calcitonin (10(-12) M) as a positive control. Finally, a single peak inhibited osteoclast activity significantly (p < 0.05). The structure of this compound was elucidated with high-performance liquid chromatography-electrospray ionization-mass spectrometry, time-of-flight electrospray ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. The single peak was identified as gamma-L-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide (GPCS). It has a molecular mass of 306 Da and inhibits dose-dependently the resorption activity of osteoclasts, the minimal effective dose being approximately 2 mM. As no other peak displayed inhibitory activity, it likely is responsible for the effect of onion on bone resorption.


Subject(s)
Bone Resorption/prevention & control , Dipeptides/pharmacology , Onions/chemistry , Osteoclasts/drug effects , Animals , Biological Assay , Chemical Fractionation , Chromatography, High Pressure Liquid , Dipeptides/chemistry , Dipeptides/isolation & purification , Magnetic Resonance Spectroscopy , Rats , Spectrometry, Mass, Electrospray Ionization , Sulfoxides
19.
J Biol Chem ; 279(35): 37087-94, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15215245

ABSTRACT

Ypr118w is a non-essential, low copy number gene product from Saccharomyces cerevisiae. It belongs to the PFAM family PF01008, which contains the alpha-, beta-, and delta-subunits of eukaryotic translation initiation factor eIF2B, as well as proteins of unknown function from all three kingdoms. Recently, one of those latter proteins from Bacillus subtilis has been characterized as a 5-methylthioribose-1-phosphate isomerase, an enzyme of the methionine salvage pathway. We report here the crystal structure of Ypr118w, which reveals a dimeric protein with two domains and a putative active site cleft. The C-terminal domain resembles ribose-5-phosphate isomerase from Escherichia coli with a similar location of the active site. In vivo, Ypr118w protein is required for yeast cells to grow on methylthioadenosine in the absence of methionine, showing that Ypr118w is involved in the methionine salvage pathway. The crystal structure of Ypr118w reveals for the first time the fold of a PF01008 member and allows a deeper discussion of an enzyme of the methionine salvage pathway, which has in the past attracted interest due to tumor suppression and as a target of aniprotozoal drugs.


Subject(s)
Aldose-Ketose Isomerases/chemistry , Eukaryotic Initiation Factor-2B/chemistry , Fungal Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Amino Acid Motifs , Amino Acid Sequence , Bacillus subtilis/metabolism , Binding Sites , Cell Division , Crystallography, X-Ray , Dimerization , Escherichia coli/metabolism , Genetic Vectors , Ions , Models, Molecular , Molecular Sequence Data , Protein Biosynthesis , Protein Conformation , Protein Structure, Tertiary , Ribulosephosphates/chemistry , Sequence Homology, Amino Acid , Sulfates/chemistry
20.
Magn Reson Chem ; 42(1): 55-60, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14745817

ABSTRACT

We present a new pulse sequence that detects simultaneously (n)J(C,H) and 2J(C,H) connectivities. The corresponding coherences are created along independent pathways and therefore can be separated into two different subspectra. One spectrum is to show all (n)J(C,H) connectivities and the other is to show exclusively 2J(C,H) connectivities. In contrast to the previously published 2J/(n)J experiment, this sequence detects the 2J(C,H) connectivities via a C,H,H-RELAY pathway leading to an intensification of the 2J(C,H) signals. Strictly, the 2J(C,H) spectrum does not show 2J(C,H) but 3J(H,H) coupling interactions within 13CH(k)-12CH(l) fragments. Therefore, 2J(C,H) signals can appear even if the corresponding 2J(C,H) coupling constant is zero.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Strychnine/chemistry , Carbon Isotopes , Hydrogen , Isotopes , Molecular Structure , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...