Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38399725

ABSTRACT

During the SARS-CoV-2 pandemic, the Dr. Risch medical group employed the multiplex TaqPathTM COVID-19 CE-IVD RT-PCR Kit for large-scale routine diagnostic testing in Switzerland and the principality of Liechtenstein. The TaqPath Kit is a widely used multiplex assay targeting three genes (i.e., ORF1AB, N, S). With emergence of the B.1.1.7 (Alpha) variant, a diagnostic flaw became apparent as the amplification of the S-gene target was absent in these samples due to a deletion (ΔH69/V70) in the Alpha variant genome. This S-gene target failure (SGTF) was the earliest indication of a new variant emerging and was also observed in subsequent variants such as Omicron BA.1 and BA4/BA.5. The Delta variant and Omicron BA.2 did not present with SGTF. From September 2020 to November 2022, we investigated the applicability of the SGTF as a surrogate marker for emerging variants such as B.1.1.7, B.1.617.2 (Delta), and Omicron BA.1, BA.2, and BA.4/BA.5 in samples with cycle threshold (Ct) values < 30. Next to true SGTF-positive and SGTF-negative samples, there were also samples presenting with delayed-type S-gene amplification (higher Ct value for S-gene than ORF1ab gene). Among these, a difference of 3.8 Ct values between the S- and ORF1ab genes was found to best distinguish between "true" SGTF and the cycle threshold variability of the assay. Samples above the cutoff were subsequently termed partial SGTF (pSGTF). Variant confirmation was performed by whole-genome sequencing (Oxford Nanopore Technology, Oxford, UK) or mutation-specific PCR (TIB MOLBIOL). In total, 17,724 (7.4%) samples among 240,896 positives were variant-confirmed, resulting in an overall sensitivity and specificity of 93.2% [92.7%, 93.7%] and 99.3% [99.2%, 99.5%], respectively. Sensitivity was increased to 98.2% [97.9% to 98.4%] and specificity lowered to 98.9% [98.6% to 99.1%] when samples with pSGTF were included. Furthermore, weekly logistic growth rates (α) and sigmoid's midpoint (t0) were calculated based on SGTF data and did not significantly differ from calculations based on comprehensive data from GISAID. The SGTF therefore allowed for a valid real-time estimate for the introduction of all dominant variants in Switzerland and Liechtenstein.

2.
Dis Markers ; 2021: 8810196, 2021.
Article in English | MEDLINE | ID: mdl-33532006

ABSTRACT

Several tests based on chemiluminescence immunoassay techniques have become available to test for SARS-CoV-2 antibodies. There is currently insufficient data on serology assay performance beyond 35 days after symptoms onset. We aimed to evaluate SARS-CoV-2 antibody tests on three widely used platforms. A chemiluminescent microparticle immunoassay (CMIA; Abbott Diagnostics, USA), a luminescence immunoassay (LIA; Diasorin, Italy), and an electrochemiluminescence immunoassay (ECLIA; Roche Diagnostics, Switzerland) were investigated. In a multigroup study, sensitivity was assessed in a group of participants with confirmed SARS-CoV-2 (n = 145), whereas specificity was determined in two groups of participants without evidence of COVID-19 (i.e., healthy blood donors, n = 191, and healthcare workers, n = 1002). Receiver operating characteristic (ROC) curves, multilevel likelihood ratios (LR), and positive (PPV) and negative (NPV) predictive values were characterized. Finally, analytical specificity was characterized in samples with evidence of the Epstein-Barr virus (EBV) (n = 9), cytomegalovirus (CMV) (n = 7), and endemic common-cold coronavirus infections (n = 12) taken prior to the current SARS-CoV-2 pandemic. The diagnostic accuracy was comparable in all three assays (AUC 0.98). Using the manufacturers' cut-offs, the sensitivities were 90%, 95% confidence interval [84,94] (LIA), 93% [88,96] (CMIA), and 96% [91,98] (ECLIA). The specificities were 99.5% [98.9,99.8] (CMIA), 99.7% [99.3,99.9] (LIA), and 99.9% [99.5,99.98] (ECLIA). The LR at half of the manufacturers' cut-offs were 60 (CMIA), 82 (LIA), and 575 (ECLIA) for positive and 0.043 (CMIA) and 0.035 (LIA, ECLIA) for negative results. ECLIA had higher PPV at low pretest probabilities than CMIA and LIA. No interference with EBV or CMV infection was observed, whereas endemic coronavirus in some cases provided signals in LIA and/or CMIA. Although the diagnostic accuracy of the three investigated assays is comparable, their performance in low-prevalence settings is different. Introducing gray zones at half of the manufacturers' cut-offs is suggested, especially for orthogonal testing approaches that use a second assay for confirmation.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Luminescent Measurements/methods , SARS-CoV-2/immunology , Adult , COVID-19 Testing , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Sensitivity and Specificity
3.
J Clin Med ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317059

ABSTRACT

Pan-immunoglobulin assays can simultaneously detect IgG, IgM and IgA directed against the receptor binding domain (RBD) of the S1 subunit of the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 S1-RBD Ig). In this work, we aim to evaluate a quantitative SARS-CoV-2 S1-RBD Ig electrochemiluminescence immunoassay (ECLIA) regarding analytical, diagnostic, operational and clinical characteristics. Our work takes the form of a population-based study in the principality of Liechtenstein, including 125 cases with clinically well-described and laboratory confirmed SARS-CoV-2 infection and 1159 individuals without evidence of coronavirus disease 2019 (COVID-19). SARS-CoV-2 cases were tested for antibodies in sera taken with a median of 48 days (interquartile range, IQR, 43-52) and 139 days (IQR, 129-144) after symptom onset. Sera were also tested with other assays targeting antibodies against non-RBD-S1 and -S1/S2 epitopes. Sensitivity was 97.6% (95% confidence interval, CI, 93.2-99.1), whereas specificity was 99.8% (95% CI, 99.4-99.9). Antibody levels linearly decreased from hospitalized patients to symptomatic outpatients and SARS-CoV-2 infection without symptoms (p < 0.001). Among cases with SARS-CoV-2 infection, smokers had lower antibody levels than non-smokers (p = 0.04), and patients with fever had higher antibody levels than patients without fever (p = 0.001). Pan-SARS-CoV-2 S1-RBD Ig in SARS-CoV-2 infection cases significantly increased from first to second follow-up (p < 0.001). A substantial proportion of individuals without evidence of past SARS-CoV-2 infection displayed non-S1-RBD antibody reactivities (248/1159, i.e., 21.4%, 95% CI, 19.1-23.4). In conclusion, a quantitative SARS-CoV-2 S1-RBD Ig assay offers favorable and sustained assay characteristics allowing the determination of quantitative associations between clinical characteristics (e.g., disease severity, smoking or fever) and antibody levels. The assay could also help to identify individuals with antibodies of non-S1-RBD specificity with potential clinical cross-reactivity to SARS-CoV-2.

4.
Biomed Res Int ; 2020: 9878453, 2020.
Article in English | MEDLINE | ID: mdl-33224987

ABSTRACT

Knowledge of the sensitivities of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests beyond 35 days after the clinical onset of COVID-19 is insufficient. We aimed to describe positivity rate of SARS-CoV-2 assays employing three different measurement principles over a prolonged period. Two hundred sixty-eight samples from 180 symptomatic patients with COVID-19 and a reverse transcription polymerase chain reaction (RT-PCR) test followed by serological investigation of SARS-CoV-2 antibodies were included. We conducted three chemiluminescence (including electrochemiluminescence assay (ECLIA)), four enzyme-linked immunosorbent assay (ELISA), and one lateral flow immunoassay (LFIA) test formats. Positivity rates, as well as positive (PPVs) and negative predictive values (NPVs), were calculated for each week after the first clinical presentation for COVID-19. Furthermore, combinations of tests were assessed within an orthogonal testing approach employing two independent assays and predictive values were calculated. Heat maps were constructed to graphically illustrate operational test characteristics. During a follow-up period of more than 9 weeks, chemiluminescence assays and one ELISA IgG test showed stable positivity rates after the third week. With the exception of ECLIA, the PPVs of the other chemiluminescence assays were ≥95% for COVID-19 only after the second week. ELISA and LFIA had somewhat lower PPVs. IgM exhibited insufficient predictive characteristics. An orthogonal testing approach provided PPVs ≥ 95% for patients with a moderate pretest probability (e.g., symptomatic patients), even for tests with a low single test performance. After the second week, NPVs of all but IgM assays were ≥95% for patients with low to moderate pretest probability. The confirmation of negative results using an orthogonal algorithm with another assay provided lower NPVs than the single assays. When interpreting results from SARS-CoV-2 tests, the pretest probability, time of blood draw, and assay characteristics must be carefully considered. An orthogonal testing approach increases the accuracy of positive, but not negative, predictions.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Antibodies, Viral/blood , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests/methods
5.
Clin Chem Lab Med ; 58(12): 2131-2140, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32866113

ABSTRACT

Objectives The sensitivity of molecular and serological methods for COVID-19 testing in an epidemiological setting is not well described. The aim of the study was to determine the frequency of negative RT-PCR results at first clinical presentation as well as negative serological results after a follow-up of at least 3 weeks. Methods Among all patients seen for suspected COVID-19 in Liechtenstein (n=1921), we included initially RT-PCR positive index patients (n=85) as well as initially RT-PCR negative (n=66) for follow-up with SARS-CoV-2 antibody testing. Antibodies were detected with seven different commercially available immunoassays. Frequencies of negative RT-PCR and serology results in individuals with COVID-19 were determined and compared to those observed in a validation cohort of Swiss patients (n=211). Results Among COVID-19 patients in Liechtenstein, false-negative RT-PCR at initial presentation was seen in 18% (12/66), whereas negative serology in COVID-19 patients was 4% (3/85). The validation cohort showed similar frequencies: 2/66 (3%) for negative serology, and 16/155 (10%) for false negative RT-PCR. COVID-19 patients with negative follow-up serology tended to have a longer disease duration (p=0.05) and more clinical symptoms than other patients with COVID-19 (p<0.05). The antibody titer from quantitative immunoassays was positively associated with the number of disease symptoms and disease duration (p<0.001). Conclusions RT-PCR at initial presentation in patients with suspected COVID-19 can miss infected patients. Antibody titers of SARS-CoV-2 assays are linked to the number of disease symptoms and the duration of disease. One in 25 patients with RT-PCR-positive COVID-19 does not develop antibodies detectable with frequently employed and commercially available immunoassays.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/immunology , Real-Time Polymerase Chain Reaction , Serologic Tests , Adult , False Positive Reactions , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Time Factors , Young Adult
6.
Diagnostics (Basel) ; 10(8)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823852

ABSTRACT

While lateral flow test formats can be utilized with whole blood and low sample volumes, their diagnostic characteristics are inferior to immunoassays based on chemiluminescence immunoassay (CLIA) or enzyme-linked immunosorbent assay (ELISA) technology. CLIAs and ELISAs can be automated to a high degree but commonly require larger serum or plasma volumes for sample processing. We addressed the suitability of EDTA-anticoagulated whole blood as an alternative sample material for antibody testing against SARS-CoV-2 by electro-CLIA (ECLIA; Roche, Rotkreuz, Switzerland) and ELISA (IgG and IgA; Euroimmun, Germany). Simultaneously drawn venous serum and EDTA-anticoagulated whole blood samples from 223 individuals were included. Correction of the whole blood results for hematocrit led to a good agreement with the serum results for weakly to moderately positive antibody signals. In receiver-operating characteristic curve analysis, all three assays displayed comparable diagnostic accuracy (area under the curve (AUC)) using corrected whole blood and serum (AUCs: 0.97 for ECLIA and IgG ELISA; 0.84 for IgA ELISA). In conclusion, our results suggest that the investigated assays can reliably detect antibodies against SARS-CoV-2 in hemolyzed whole blood anticoagulated with EDTA. Correction of these results for hematocrit is suggested. This study demonstrates that the automated processing of whole blood for identification of SARS-CoV-2 antibodies with common ECLIA and ELISA methods is accurate and feasible.

7.
BMC Pediatr ; 11: 38, 2011 May 19.
Article in English | MEDLINE | ID: mdl-21595972

ABSTRACT

BACKGROUND: Vasopressin is one of the most important physiological stress and shock hormones. Copeptin, a stable vasopressin precursor, is a promising sepsis marker in adults. In contrast, its involvement in neonatal diseases remains unknown. The aim of this study was to establish copeptin concentrations in neonates of different stress states such as sepsis, chorioamnionitis and asphyxia. METHODS: Copeptin cord blood concentration was determined using the BRAHMS kryptor assay. Neonates with early-onset sepsis (EOS, n = 30), chorioamnionitis (n = 33) and asphyxia (n = 25) were compared to a control group of preterm and term (n = 155) neonates. RESULTS: Median copeptin concentration in cord blood was 36 pmol/l ranging from undetectable to 5498 pmol/l (IQR 7 - 419). Copeptin cord blood concentrations were non-normally distributed and increased with gestational age (p < 0.0001). Neonates born after vaginal compared to cesarean delivery had elevated copeptin levels (p < 0.0001). Copeptin correlated strongly with umbilical artery pH (Spearman's Rho -0.50, p < 0.0001), umbilical artery base excess (Rho -0.67, p < 0.0001) and with lactate at NICU admission (Rho 0.54, p < 0.0001). No difference was found when comparing copeptin cord blood concentrations between neonates with EOS and controls (multivariate p = 0.30). The highest copeptin concentrations were found in neonates with asphyxia (median 993 pmol/l). Receiver-operating-characteristic curve analysis showed that copeptin cord blood concentrations were strongly associated with asphyxia: the area under the curve resulted at 0.91 (95%-CI 0.87-0.96, p < 0.0001). A cut-off of 400 pmol/l had a sensitivity of 92% and a specifity of 82% for asphyxia as defined in this study. CONCLUSIONS: Copeptin concentrations were strongly related to factors associated with perinatal stress such as birth acidosis, asphyxia and vaginal delivery. In contrast, copeptin appears to be unsuitable for the diagnosis of EOS.


Subject(s)
Asphyxia/diagnosis , Chorioamnionitis/diagnosis , Fetal Blood/chemistry , Glycopeptides/blood , Sepsis/diagnosis , Asphyxia/blood , Biomarkers/blood , Chorioamnionitis/blood , Delivery, Obstetric , Female , Gestational Age , Humans , Infant , Infant, Newborn , Male , Pregnancy , Sepsis/blood
8.
Pediatr Allergy Immunol ; 22(4): 424-30, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21226765

ABSTRACT

This study aimed to measure serum concentrations of five lectin-pathway components, mannan-binding lectin (MBL), M-ficolin, L-ficolin, H-ficolin, and MBL-associated serine protease-2 (MASP-2), in healthy neonates and children, to determine if they change with age and to compare them with serum concentrations in healthy adults. Concentrations were measured in 141 preterm and 30 term neonates, in 120 children including infants and adolescents, and in 350 adults (97 for L-ficolin) by inhouse time-resolved immunofluorometric assays or commercially available enzyme-linked immunosorbent assays. The adjacent categories method applying Wilcoxon-Mann-Whitney tests was used to determine age categories where concentrations differed significantly. Displaying serum concentration vs. age, an inverted-U shape (higher concentrations in children than in neonates and adults) was found for MBL and the ficolins, and an S-shape for MASP-2. Serum concentrations of all five lectin-pathway components were significantly lower in preterm neonates <32-wk gestational age compared to older neonates, infants, and children. Only M-ficolin in children >1 yr and H-ficolin in term neonates and in children were found to be comparable with adult values. MBL, M-, L-, and H-ficolin, and MASP-2 serum concentrations show important changes with age. The respective normal ranges for adults should not be used in the pediatric population. The age-specific pediatric ranges established here may be used instead.


Subject(s)
Lectins/blood , Mannose-Binding Lectin/blood , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Premature Birth/diagnosis , Adolescent , Adult , Age Factors , Child , Complement Pathway, Mannose-Binding Lectin , Diagnostic Errors/prevention & control , Female , Humans , Infant, Newborn , Male , Pregnancy , Premature Birth/immunology , Ficolins
SELECTION OF CITATIONS
SEARCH DETAIL
...