Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 145: 170640, 2021 11.
Article in English | MEDLINE | ID: mdl-34450203

ABSTRACT

The insulin/insulin-like growth factor signaling pathway is an evolutionary conserved pathway across metazoans and is required for development, metabolism and behavior. This pathway is associated with various human metabolic disorders and cancers. Thus, model organisms including Drosophila melanogaster and Caenorhabditis elegans provide excellent opportunities to examine the structure and function of this pathway and its influence on cellular metabolism and proliferation. In this review, we will provide an overview of human insulin and the human insulin signaling pathway and explore the recent discoveries in model organisms Drosophila melanogaster and Caenorhabditis elegans. Our review will provide information regarding the various insulin-like peptides in model organisms as well as the conserved functions of insulin signaling pathways. Further investigation of the insulin signaling pathway in model organisms could provide a promising opportunity to develop novel therapies for various metabolic disorders and insulin-mediated cancers.


Subject(s)
Caenorhabditis elegans/metabolism , Drosophila melanogaster/metabolism , Insulin/metabolism , Animals , Antigens, CD/chemistry , Antigens, CD/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Insulin/chemistry , Insulin/genetics , Neuropeptides/genetics , Neuropeptides/metabolism , PTEN Phosphohydrolase/metabolism , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Signal Transduction
2.
Plant Cell Environ ; 42(4): 1139-1157, 2019 04.
Article in English | MEDLINE | ID: mdl-30156702

ABSTRACT

The purple acid phosphatase AtPAP26 plays a central role in Pi-scavenging by Pi-starved (-Pi) Arabidopsis. Mass spectrometry (MS) of AtPAP26-S1 and AtPAP26-S2 glycoforms secreted by -Pi suspension cells demonstrated that N-glycans at Asn365 and Asn422 were modified in AtPAP26-S2 to form high-mannose glycans. A 55-kDa protein that co-purified with AtPAP26-S2 was identified as a Galanthus nivalis agglutinin-related and apple domain lectin-1 (AtGAL1; At1g78850). MS revealed that AtGAL1 was bisphosphorylated at Tyr38 and Thr39 and glycosylated at four conserved Asn residues. When AtGAL was incubated in the presence of a thiol-reducing reagent prior to immunoblotting, its cross-reactivity with anti-AtGAL1-IgG was markedly attenuated (consistent with three predicted disulfide bonds in AtGAL1's apple domain). Secreted AtGAL1 polypeptides were upregulated to a far greater extent than AtGAL1 transcripts during Pi deprivation, indicating posttranscriptional control of AtGAL1 expression. Growth of a -Pi atgal1 mutant was unaffected, possibly due to compensation by AtGAL1's closest paralog, AtGAL2 (At1g78860). Nevertheless, AtGAL1's induction by numerous stresses combined with the broad distribution of AtGAL1-like lectins in diverse species implies an important function for AtGAL1 orthologs within the plant kingdom. We hypothesize that binding of AtPAP26-S2's high-mannose glycans by AtGAL1 enhances AtPAP26 function to facilitate Pi-scavenging by -Pi Arabidopsis.


Subject(s)
Acid Phosphatase/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Galactokinase/metabolism , Phosphates/deficiency , Acid Phosphatase/isolation & purification , Arabidopsis Proteins/isolation & purification , Cells, Cultured , Chromatography, Gel , Disaccharides , Galactokinase/isolation & purification , Glucuronates , Phosphates/metabolism , Spectroscopy, Fourier Transform Infrared , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...