Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 55(22): 15542-15553, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34736317

ABSTRACT

The removal of CO2 from gases is an important industrial process in the transition to a low-carbon economy. The use of selective physical (co-)solvents is especially perspective in cases when the amount of CO2 is large as it enables one to lower the energy requirements for solvent regeneration. However, only a few physical solvents have found industrial application and the design of new ones can pave the way to more efficient gas treatment techniques. Experimental screening of gas solubility is a labor-intensive process, and solubility modeling is a viable strategy to reduce the number of solvents subject to experimental measurements. In this paper, a chemoinformatics-based modeling workflow was applied to build a predictive model for the solubility of CO2 and four other industrially important gases (CO, CH4, H2, and N2). A dataset containing solubilities of gases in 280 solvents was collected from literature sources and supplemented with the new data for six solvents measured in the present study. A modeling workflow based on the usage of several state-of-the-art machine learning algorithms was applied to establish quantitative structure-solubility relationships. The best models were used to perform virtual screening of the industrially produced chemicals. It enabled the identification of compounds with high predicted CO2 solubility and selectivity toward other gases. The prediction for one of the compounds, 4-methylmorpholine, was confirmed experimentally.


Subject(s)
Carbon Dioxide , Cheminformatics , Gases , Solubility , Solvents
2.
Angew Chem Int Ed Engl ; 59(43): 18938-18942, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32568440

ABSTRACT

Zeolite-catalyzed alkene cracking is key to optimize the size of hydrocarbons. The nature and stability of intermediates and transition states (TS) are, however, still debated. We combine transition path sampling and blue moon ensemble density functional theory simulations to unravel the behavior of C7 alkenes in CHA zeolite. Free energy profiles are determined, linking π-complexes, alkoxides and carbenium ions, for B1 (secondary to tertiary) and B2 (tertiary to secondary) ß-scissions. B1 is found to be easier than B2 . The TS for B1 occurs at the breaking of the C-C bond, while for B2 it is the proton transfer from propenium to the zeolite. We highlight the dynamic behaviors of the various intermediates along both pathways, which reduce activation energies with respect to those previously evaluated by static approaches. We finally revisit the ranking of isomerization and cracking rate constants, which are crucial for future kinetic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...