Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 525, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692535

ABSTRACT

The original version of this Article omitted a declaration from the competing interests statement, which should have included the following: 'K.P.W. is President of Tempus Lab, Inc., Chicago, IL, USA'. This has now been corrected in both the PDF and HTML versions of the Article.

2.
Nat Commun ; 9(1): 5397, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559362

ABSTRACT

The original version of this Article contained an error in the author affiliations. The affiliation of Kevin P. White with Tempus Labs, Inc., Chicago, IL, USA was inadvertently omitted.This has now been corrected in both the PDF and HTML versions of the Article.

3.
Nat Commun ; 9(1): 3385, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30139972

ABSTRACT

Patients with seemingly the same tumour can respond very differently to treatment. There are strong, well-established effects of somatic mutations on drug efficacy, but there is at-most anecdotal evidence of a germline component to drug response. Here, we report a systematic survey of how inherited germline variants affect drug susceptibility in cancer cell lines. We develop a joint analysis approach that leverages both germline and somatic variants, before applying it to screening data from 993 cell lines and 265 drugs. Surprisingly, we find that the germline contribution to variation in drug susceptibility can be as large or larger than effects due to somatic mutations. Several of the associations identified have a direct relationship to the drug target. Finally, using 17-AAG response as an example, we show how germline effects in combination with transcriptomic data can be leveraged for improved patient stratification and to identify new markers for drug sensitivity.


Subject(s)
Drug Screening Assays, Antitumor , Germ Cells/metabolism , Neoplasms/genetics , Benzoquinones/metabolism , Cell Line, Tumor , Germ-Line Mutation/genetics , Humans , Lactams, Macrocyclic/metabolism , Quantitative Trait Loci/genetics
4.
Nat Commun ; 8(1): 1221, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29089486

ABSTRACT

Homozygous deletions are rare in cancers and often target tumour suppressor genes. Here, we build a compendium of 2218 primary tumours across 12 human cancer types and systematically screen for homozygous deletions, aiming to identify rare tumour suppressors. Our analysis defines 96 genomic regions recurrently targeted by homozygous deletions. These recurrent homozygous deletions occur either over tumour suppressors or over fragile sites, regions of increased genomic instability. We construct a statistical model that separates fragile sites from regions showing signatures of positive selection for homozygous deletions and identify candidate tumour suppressors within those regions. We find 16 established tumour suppressors and propose 27 candidate tumour suppressors. Several of these genes (including MGMT, RAD17, and USP44) show prior evidence of a tumour suppressive function. Other candidate tumour suppressors, such as MAFTRR, KIAA1551, and IGF2BP2, are novel. Our study demonstrates how rare tumour suppressors can be identified through copy number meta-analysis.


Subject(s)
Gene Deletion , Genes, Tumor Suppressor , Neoplasms/genetics , Alleles , Chromosome Fragile Sites/genetics , Gene Dosage , Genome, Human , Homozygote , Humans , Ploidies , Telomere/metabolism
5.
Cell ; 166(3): 740-754, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27397505

ABSTRACT

Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Analysis of Variance , Cell Line, Tumor , DNA Methylation , Drug Resistance, Neoplasm/genetics , Gene Dosage , Humans , Models, Genetic , Mutation , Neoplasms/genetics , Oncogenes , Precision Medicine
6.
Blood ; 125(3): 499-503, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25343957

ABSTRACT

Despite the recent identification of recurrent SETBP1 mutations in atypical chronic myeloid leukemia (aCML), a complete description of the somatic lesions responsible for the onset of this disorder is still lacking. To find additional somatic abnormalities in aCML, we performed whole-exome sequencing on 15 aCML cases. In 2 cases (13.3%), we identified somatic missense mutations in the ETNK1 gene. Targeted resequencing on 515 hematological clonal disorders revealed the presence of ETNK1 variants in 6 (8.8%) of 68 aCML and 2 (2.6%) of 77 chronic myelomonocytic leukemia samples. These mutations clustered in a small region of the kinase domain, encoding for H243Y and N244S (1/8 H243Y; 7/8 N244S). They were all heterozygous and present in the dominant clone. The intracellular phosphoethanolamine/phosphocholine ratio was, on average, 5.2-fold lower in ETNK1-mutated samples (P < .05). Similar results were obtained using myeloid TF1 cells transduced with ETNK1 wild type, ETNK1-N244S, and ETNK1-H243Y, where the intracellular phosphoethanolamine/phosphocholine ratio was significantly lower in ETNK1-N244S (0.76 ± 0.07) and ETNK1-H243Y (0.37 ± 0.02) than in ETNK1-WT (1.37 ± 0.32; P = .01 and P = .0008, respectively), suggesting that ETNK1 mutations may inhibit the catalytic activity of the enzyme. In summary, our study shows for the first time the evidence of recurrent somatic ETNK1 mutations in the context of myeloproliferative/myelodysplastic disorders.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelomonocytic, Chronic/genetics , Mutation/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Amino Acid Sequence , Case-Control Studies , Follow-Up Studies , Humans , Molecular Sequence Data , Prognosis , Sequence Homology, Amino Acid
7.
Nat Commun ; 5: 3644, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24714652

ABSTRACT

Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5' truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context.


Subject(s)
Neoplasms/genetics , Pseudogenes/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Pseudogenes/physiology
8.
Nat Commun ; 5: 2997, 2014.
Article in English | MEDLINE | ID: mdl-24429703

ABSTRACT

Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment.


Subject(s)
Exome , Multiple Myeloma/genetics , Adult , Aged , Antigens, Nuclear , Cohort Studies , DNA Copy Number Variations , Early Growth Response Protein 1 , Evolution, Molecular , GTP Phosphohydrolases , Genetic Heterogeneity , Humans , Lymphotoxin-beta , Membrane Proteins , Middle Aged , Mutation , Mutation, Missense , Nerve Tissue Proteins , Proto-Oncogene Proteins , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Receptors, Immunologic , Sequence Analysis, DNA , Transcription Factors , Tumor Suppressor Protein p53 , ras Proteins , Roundabout Proteins
9.
Nature ; 500(7463): 415-21, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23945592

ABSTRACT

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Subject(s)
Cell Transformation, Neoplastic/genetics , Mutagenesis/genetics , Mutation/genetics , Neoplasms/genetics , Aging/genetics , Algorithms , Cell Transformation, Neoplastic/pathology , Cytidine Deaminase/genetics , DNA/genetics , DNA/metabolism , DNA Mutational Analysis , Humans , Models, Genetic , Mutagenesis, Insertional/genetics , Mutagens/pharmacology , Neoplasms/enzymology , Neoplasms/pathology , Organ Specificity , Reproducibility of Results , Sequence Deletion/genetics , Transcription, Genetic/genetics
10.
J Clin Invest ; 123(7): 2965-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23778141

ABSTRACT

Adenoid cystic carcinoma (ACC) is a rare malignancy that can occur in multiple organ sites and is primarily found in the salivary gland. While the identification of recurrent fusions of the MYB-NFIB genes have begun to shed light on the molecular underpinnings, little else is known about the molecular genetics of this frequently fatal cancer. We have undertaken exome sequencing in a series of 24 ACC to further delineate the genetics of the disease. We identified multiple mutated genes that, combined, implicate chromatin deregulation in half of cases. Further, mutations were identified in known cancer genes, including PIK3CA, ATM, CDKN2A, SF3B1, SUFU, TSC1, and CYLD. Mutations in NOTCH1/2 were identified in 3 cases, and we identify the negative NOTCH signaling regulator, SPEN, as a new cancer gene in ACC with mutations in 5 cases. Finally, the identification of 3 likely activating mutations in the tyrosine kinase receptor FGFR2, analogous to those reported in ovarian and endometrial carcinoma, point to potential therapeutic avenues for a subset of cases.


Subject(s)
Carcinoma, Adenoid Cystic/genetics , Exome , Salivary Gland Neoplasms/genetics , DNA Mutational Analysis , Genes, Neoplasm , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Mutation , Polymorphism, Single Nucleotide
11.
PLoS One ; 8(6): e64991, 2013.
Article in English | MEDLINE | ID: mdl-23762276

ABSTRACT

Many tumors have highly rearranged genomes, but a major unknown is the relative importance and timing of genome rearrangements compared to sequence-level mutation. Chromosome instability might arise early, be a late event contributing little to cancer development, or happen as a single catastrophic event. Another unknown is which of the point mutations and rearrangements are selected. To address these questions we show, using the breast cancer cell line HCC1187 as a model, that we can reconstruct the likely history of a breast cancer genome. We assembled probably the most complete map to date of a cancer genome, by combining molecular cytogenetic analysis with sequence data. In particular, we assigned most sequence-level mutations to individual chromosomes by sequencing of flow sorted chromosomes. The parent of origin of each chromosome was assigned from SNP arrays. We were then able to classify most of the mutations as earlier or later according to whether they occurred before or after a landmark event in the evolution of the genome, endoreduplication (duplication of its entire genome). Genome rearrangements and sequence-level mutations were fairly evenly divided earlier and later, suggesting that genetic instability was relatively constant throughout the life of this tumor, and chromosome instability was not a late event. Mutations that caused chromosome instability would be in the earlier set. Strikingly, the great majority of inactivating mutations and in-frame gene fusions happened earlier. The non-random timing of some of the mutations may be evidence that they were selected.


Subject(s)
Breast Neoplasms/genetics , Chromosomal Instability , Chromosomes, Human/genetics , Gene Rearrangement , Genome, Human/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Breast Neoplasms/pathology , Chromosome Mapping , Female , Humans , Time Factors , Tumor Cells, Cultured
12.
Nucleic Acids Res ; 41(12): 6119-38, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23630320

ABSTRACT

The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.


Subject(s)
Cell Cycle/genetics , DNA Copy Number Variations , Blastomeres/chemistry , Cell Line, Tumor , Chromosome Aberrations , Genome, Human , Genomics/methods , Genotyping Techniques , Humans , Mutation , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Single-Cell Analysis
13.
Nat Genet ; 45(1): 18-24, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23222956

ABSTRACT

Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16-35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases.


Subject(s)
Carrier Proteins/genetics , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics , Mutation , Nuclear Proteins/genetics , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Carrier Proteins/metabolism , DNA-Binding Proteins , Exome , Histone Chaperones/genetics , Histone Chaperones/metabolism , Humans , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/mortality , Molecular Sequence Data , Nuclear Proteins/metabolism , Prognosis , Protein Binding , Protein Interaction Domains and Motifs , Protein Phosphatase 2/metabolism , Sequence Analysis, DNA , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Nature ; 486(7403): 400-4, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22722201

ABSTRACT

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Mutagenesis/genetics , Mutation/genetics , Oncogenes/genetics , Age Factors , Breast Neoplasms/classification , Breast Neoplasms/pathology , Cytosine/metabolism , DNA Mutational Analysis , Female , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Neoplasm Grading , Reproducibility of Results , Signal Transduction/genetics
15.
Cell ; 149(5): 994-1007, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22608083

ABSTRACT

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic , Clonal Evolution , Mutation , Algorithms , Chromosome Aberrations , Female , Humans , Point Mutation
16.
Cell ; 149(5): 979-93, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22608084

ABSTRACT

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Subject(s)
Breast Neoplasms/genetics , DNA Mutational Analysis , Genome-Wide Association Study , Mutation , APOBEC-1 Deaminase , BRCA2 Protein/genetics , Cytidine Deaminase/metabolism , Female , Genes, BRCA1 , High-Throughput Nucleotide Sequencing , Humans
17.
Nature ; 483(7391): 570-5, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22460902

ABSTRACT

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.


Subject(s)
Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Genes, Neoplasm/genetics , Genetic Markers/genetics , Genome, Human/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/genetics , Genomics , Humans , Indoles/pharmacology , Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Pharmacogenetics , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology
18.
Cell ; 148(4): 780-91, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341448

ABSTRACT

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Subject(s)
Facial Neoplasms/veterinary , Genomic Instability , Marsupialia/genetics , Mutation , Animals , Clonal Evolution , Endangered Species , Facial Neoplasms/epidemiology , Facial Neoplasms/genetics , Facial Neoplasms/pathology , Female , Genome-Wide Association Study , Male , Molecular Sequence Data , Tasmania/epidemiology
19.
Genome Res ; 21(4): 525-34, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21252201

ABSTRACT

Reciprocal chromosome translocations are often not exactly reciprocal. Most familiar are deletions at the breakpoints, up to megabases in extent. We describe here the opposite phenomenon-duplication of tens or hundreds of kilobases at the breakpoint junction, so that the same sequence is present on both products of a translocation. When the products of the translocation are mapped on the genome, they overlap. We report several of these "overlapping-breakpoint" duplications in breast cancer cell lines HCC1187, HCC1806, and DU4475. These lines also had deletions and essentially balanced translocations. In HCC1187 and HCC1806, we identified five cases of duplication ranging between 46 kb and 200 kb, with the partner chromosome showing deletions between 29 bp and 31 Mb. DU4475 had a duplication of at least 200 kb. Breakpoints were mapped using array painting, i.e., hybridization of chromosomes isolated by flow cytometry to custom oligonucleotide microarrays. Duplications were verified by fluorescent in situ hybridization (FISH), PCR on isolated chromosomes, and cloning of breakpoints. We propose that these duplications are the counterpart of deletions and that they are produced at a replication bubble, comprising two replication forks with the duplicated sequence in between. Both copies of the duplicated sequence would go to one daughter cell, on different products of the translocation, while the other daughter cell would show deletion. These duplications may have been overlooked because they may be missed by FISH and array-CGH and may be interpreted as insertions by paired-end sequencing. Such duplications may therefore be quite frequent.


Subject(s)
Chromosome Breakage , DNA Replication/genetics , Gene Deletion , Translocation, Genetic , Base Sequence , Cell Line, Tumor , Chromosomes, Human/genetics , Humans , Models, Genetic , Molecular Sequence Data , Sequence Alignment
20.
Cell ; 144(1): 27-40, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21215367

ABSTRACT

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Subject(s)
Chromosome Aberrations , Neoplasms/genetics , Neoplasms/pathology , Bone Neoplasms/genetics , Cell Line, Tumor , Chromosome Painting , Female , Gene Rearrangement , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...