Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Exp Clin Cancer Res ; 43(1): 150, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807192

ABSTRACT

BACKGROUND: Ovarian cancer has a high mortality rate mainly due to its resistance to currently used therapies. This resistance has been associated with the presence of cancer stem cells (CSCs), interactions with the microenvironment, and intratumoral heterogeneity. Therefore, the search for new therapeutic targets, particularly those targeting CSCs, is important for improving patient prognosis. HOOK1 has been found to be transcriptionally altered in a substantial percentage of ovarian tumors, but its role in tumor initiation and development is still not fully understood. METHODS: The downregulation of HOOK1 was performed in ovarian cancer cell lines using CRISPR/Cas9 technology, followed by growth in vitro and in vivo assays. Subsequently, migration (Boyden chamber), cell death (Western-Blot and flow cytometry) and stemness properties (clonal heterogeneity analysis, tumorspheres assay and flow cytometry) of the downregulated cell lines were analysed. To gain insights into the specific mechanisms of action of HOOK1 in ovarian cancer, a proteomic analysis was performed, followed by Western-blot and cytotoxicity assays to confirm the results found within the mass spectrometry. Immunofluorescence staining, Western-blotting and flow cytometry were also employed to finish uncovering the role of HOOK1 in ovarian cancer. RESULTS: In this study, we observed that reducing the levels of HOOK1 in ovarian cancer cells reduced in vitro growth and migration and prevented tumor formation in vivo. Furthermore, HOOK1 reduction led to a decrease in stem-like capabilities in these cells, which, however, did not seem related to the expression of genes traditionally associated with this phenotype. A proteome study, along with other analysis, showed that the downregulation of HOOK1 also induced an increase in endoplasmic reticulum stress levels in these cells. Finally, the decrease in stem-like properties observed in cells with downregulated HOOK1 could be explained by an increase in cell death in the CSC population within the culture due to endoplasmic reticulum stress by the unfolded protein response. CONCLUSION: HOOK1 contributes to maintaining the tumorigenic and stemness properties of ovarian cancer cells by preserving protein homeostasis and could be considered an alternative therapeutic target, especially in combination with inducers of endoplasmic reticulum or proteotoxic stress such as proteasome inhibitors.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Neoplastic Stem Cells , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Cell Line, Tumor , Proteostasis , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Cell Proliferation , Cell Movement
2.
iScience ; 27(2): 108958, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38323010

ABSTRACT

The protein kinase D (PKD) family members regulate the fission of cargo vesicles at the Golgi complex and play a pro-oncogenic role in triple-negative breast cancer (TNBC). Whether PKD facilitates the secretion of tumor-promoting factors in TNBC, however, is still unknown. Using the pharmacological inhibition of PKD activity and siRNA-mediated depletion of PKD2 and PKD3, we identified the PKD-dependent secretome of the TNBC cell lines MDA-MB-231 and MDA-MB-468. Mass spectrometry-based proteomics and antibody-based assays revealed a significant downregulation of extracellular matrix related proteins and pro-invasive factors such as LIF, MMP-1, MMP-13, IL-11, M-CSF and GM-CSF in PKD-perturbed cells. Notably, secretion of these proteins in MDA-MB-231 cells was predominantly controlled by PKD2 and enhanced spheroid invasion. Consistently, PKD-dependent secretion of pro-invasive factors was more pronounced in metastatic TNBC cell lines. Our study thus uncovers a novel role of PKD2 in releasing a pro-invasive secretome.

3.
Proteomics ; 24(7): e2300262, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38221716

ABSTRACT

The cancer cell secretome comprises a treasure-trove for biomarkers since it reflects cross-talk between tumor cells and their surrounding environment with high detectability in biofluids. In this study, we evaluated six secretome sample processing workflows coupled to single-shot mass spectrometry: (1) Protein concentration by ultrafiltration with a molecular weight cut-off (MWCO) filter and sample preparation through in-gel digestion (IGD); (2) Acetone protein precipitation coupled to IGD; (3) MWCO filter-based protein concentration followed by to in-solution digestion (ISD); (4) Acetone protein precipitation coupled to ISD; (5) Direct ISD; (6) Secretome lyophilization and ISD. To this end, we assessed workflow triplicates in terms of total number of protein identifications, unique identifications, reproducibility of protein identification and quantification and detectability of small proteins with important functions in cancer biology such as cytokines, chemokines, and growth factors. Our findings revealed that acetone protein precipitation coupled to ISD outperformed the other methods in terms of the number of identified proteins (2246) and method reproducibility (correlation coefficient between replicates (r = 0.94, CV = 19%). Overall, especially small proteins such as those from the classes mentioned above were better identified using ISD workflows. Concluding, herein we report that secretome protein precipitation coupled to ISD is the method of choice for high-throughput secretome proteomics via single shot nanoLC-MS/MS.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Proteomics/methods , Reproducibility of Results , Acetone , Secretome , Proteins/metabolism , Proteome/metabolism
4.
Methods Mol Biol ; 2718: 235-251, 2023.
Article in English | MEDLINE | ID: mdl-37665463

ABSTRACT

Urinary extracellular vesicles (uEVs) are a rich source of noninvasive protein biomarkers. However, for translation to clinical applications, an easy-to-use uEV isolation protocol is needed that is compatible with proteomics. Here, we provide a detailed description of a quick and clinical applicable uEV isolation protocol. We focus on the isolation procedure and subsequent in-depth proteome characterization using LC-MS/MS-based proteomics. As an example, we show how differential analyses can be performed using urine samples obtained from prostate cancer patients, compared to urine from controls.


Subject(s)
Extracellular Vesicles , Urinary Tract , Male , Humans , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry
5.
Gut Microbes ; 14(1): 2139979, 2022.
Article in English | MEDLINE | ID: mdl-36369736

ABSTRACT

BACKGROUND: Screening for colorectal cancer (CRC) reduces its mortality but has limited sensitivity and specificity. Aims We aimed to explore potential biomarker panels for CRC and adenoma detection and to gain insight into the interaction between gut microbiota and human metabolism in the presence of these lesions. METHODS: This multicenter case-control cohort was performed between February 2016 and November 2019. Consecutive patients ≥18 years with a scheduled colonoscopy were asked to participate and divided into three age, gender, body-mass index and smoking status-matched subgroups: CRC (n = 12), adenomas (n = 21) and controls (n = 20). Participants collected fecal samples prior to bowel preparation on which proteome (LC-MS/MS), microbiota (16S rRNA profiling) and amino acid (HPLC) composition were assessed. Best predictive markers were combined to create diagnostic biomarker panels. Pearson correlation-based analysis on selected markers was performed to create networks of all platforms. RESULTS: Combining omics platforms provided new panels which outperformed hemoglobin in this cohort, currently used for screening (AUC 0.98, 0.95 and 0.87 for CRC vs controls, adenoma vs controls and CRC vs adenoma, respectively). Integration of data sets revealed markers associated with increased blood excretion, stress- and inflammatory responses and pointed toward downregulation of epithelial integrity. CONCLUSIONS: Integrating fecal microbiota, proteome and amino acids platforms provides for new biomarker panels that may improve noninvasive screening for adenomas and CRC, and may subsequently lead to lower incidence and mortality of colon cancer.


Subject(s)
Adenoma , Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Proteome/analysis , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Chromatography, Liquid , RNA, Ribosomal, 16S , Amino Acids , Tandem Mass Spectrometry , Adenoma/diagnosis , Feces/chemistry
6.
Clin Proteomics ; 19(1): 4, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35130834

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a main cause of oral cancer mortality and morbidity in central south Asia. To improve the clinical outcome of OSCC patients, detection markers are needed, which are preferably non-invasive and thus independent of a tissue biopsy. METHODS: In the present study, we aimed to identify robust candidate protein biomarkers for non-invasive OSCC diagnosis. To this end, we measured the global protein profiles of OSCC tissue lysates to matched normal adjacent mucosa samples (n = 14) and the secretomes of nine HNSCC cell lines using LC-MS/MS-based proteomics. RESULTS: A total of 5123 tissue proteins were identified, of which 205 were robustly up- regulated (p-value < 0.01, fold change > + 2) in OSCC-tissues compared to normal adjacent tissues. The biological process "Secretion" was highly enriched in this set of proteins. Other upregulated biological pathways included "Unfolded Protein Response", "Spliceosomal complex assembly", "Protein localization to endosome" and "Interferon Gamma Response". Transcription factor analysis implicated Creb3L1, ESRRA, YY, ELF2, STAT1 and XBP as potential regulators. Of the 205 upregulated tissue proteins, 132 were identified in the cancer cell line secretomes, underscoring their potential use as non-invasive biofluid markers. To further prioritize our candidate markers for non-invasive OSCC detection, we integrated our data with public biofluid datasets including OSCC saliva, yielding 25 candidate markers for further study. CONCLUSIONS: We identified several key proteins and processes that are associated with OSCC tissues, underscoring the importance of altered secretion. Cancer-associated OSCC secretome proteins present in saliva have potential to be used as novel non-invasive biomarkers for the diagnosis of OSCC.

7.
Am J Respir Crit Care Med ; 205(7): 806-818, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35081007

ABSTRACT

Rationale: von Willebrand factor (vWF) mediates platelet adhesion during thrombosis. While chronic thromboembolic pulmonary hypertension (CTEPH) is associated with increased plasma levels of vWF, the role of this protein in CTEPH has remained enigmatic. Objectives: To identify the role of vWF in CTEPH. Methods: CTEPH-specific patient plasma and pulmonary endarterectomy material from patients with CTEPH were used to study the relationship between inflammation, vWF expression, and pulmonary thrombosis. Cell culture findings were validated in human tissue, and proteomics and chromatin immunoprecipitation were used to investigate the underlying mechanism of CTEPH. Measurements and Main Results: vWF is increased in plasma and the pulmonary endothelium of CTEPH patients. In vitro, the increase in vWF gene expression and the higher release of vWF protein upon endothelial activation resulted in elevated platelet adhesion to CTEPH endothelium. Proteomic analysis revealed that nuclear factor (NF)-κB2 was significantly increased in CTEPH. We demonstrate reduced histone tri-methylation and increased histone acetylation of the vWF promoter in CTEPH endothelium, facilitating binding of NF-κB2 to the vWF promoter and driving vWF transcription. Genetic interference of NFκB2 normalized the high vWF RNA expression levels and reversed the prothrombotic phenotype observed in CTEPH-pulmonary artery endothelial cells. Conclusions: Epigenetic regulation of the vWF promoter contributes to the creation of a local environment that favors in situ thrombosis in the pulmonary arteries. It reveals a direct molecular link between inflammatory pathways and platelet adhesion in the pulmonary vascular wall, emphasizing a possible role of in situ thrombosis in the development or progression of CTEPH.


Subject(s)
Hypertension, Pulmonary , von Willebrand Factor , Endothelial Cells/metabolism , Endothelium, Vascular , Epigenesis, Genetic , Humans , Platelet Aggregation , Proteomics , von Willebrand Factor/analysis , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
8.
Sci Rep ; 11(1): 15629, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341426

ABSTRACT

The protein content of urinary extracellular vesicles (EVs) is considered to be an attractive non-invasive biomarker source. However, little is known about the consistency and variability of urinary EV proteins within and between individuals over a longer time-period. Here, we evaluated the stability of the urinary EV proteomes of 8 healthy individuals at 9 timepoints over 6 months using data-independent-acquisition mass spectrometry. The 1802 identified proteins had a high correlation amongst all samples, with 40% of the proteome detected in every sample and 90% detected in more than 1 individual at all timepoints. Unsupervised analysis of top 10% most variable proteins yielded person-specific profiles. The core EV-protein-interaction network of 516 proteins detected in all measured samples revealed sub-clusters involved in the biological processes of G-protein signaling, cytoskeletal transport, cellular energy metabolism and immunity. Furthermore, gender-specific expression patterns were detected in the urinary EV proteome. Our findings indicate that the urinary EV proteome is stable in longitudinal samples of healthy subjects over a prolonged time-period, further underscoring its potential for reliable non-invasive diagnostic/prognostic biomarkers.


Subject(s)
Extracellular Vesicles , Proteomics , Biomarkers/metabolism , Humans
9.
J Extracell Vesicles ; 10(7): e12093, 2021 05.
Article in English | MEDLINE | ID: mdl-34035881

ABSTRACT

Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.


Subject(s)
Biomarkers/urine , Extracellular Vesicles/physiology , Urinary Tract/pathology , Advisory Committees , Body Fluids/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Humans , Kidney , Reference Standards , Reproducibility of Results , Societies , Urine
10.
Proteomics Clin Appl ; 15(2-3): e1900119, 2021 05.
Article in English | MEDLINE | ID: mdl-33587312

ABSTRACT

PURPOSE: To mimic the perioperative microenvironment where bacterial products get in contact with colorectal cancer (CRC) cells and study its impact on protein release, we exposed six CRC cell lines to lipopolysaccharide (LPS) and investigated the effect on the secretome using in-depth mass spectrometry-based proteomics. EXPERIMENTAL DESIGN: Cancer cell secretome was harvested in bio-duplicate after LPS treatment, and separated in EV and soluble secretome (SS) fractions. Gel-fractionated proteins were analysed by label-free nano-liquid chromatography coupled to tandem mass spectrometry. NF-κB activation, triggered upon LPS treatment, was evaluated. RESULTS: We report a CRC secretome dataset of 5601 proteins. Comparison of all LPS-treated cells with controls revealed 37 proteins with altered abundance in the SS, including RPS25; and 13 in EVs, including HMGB1. Comparing controls and LPS-treated samples per cell line, revealed 564 significant differential proteins with fold-change >3. The LPS-induced release of RPS25 was validated by western blot. CONCLUSIONS AND CLINICAL RELEVANCE: Bacterial endotoxin has minor impact on the global CRC cell line secretome, yet it may alter protein release in a cell line-specific manner. This modulation might play a role in orchestrating the development of a permissive environment for CRC liver metastasis, especially through EV-communication.


Subject(s)
Lipopolysaccharides
11.
J Proteomics ; 232: 104076, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33307249

ABSTRACT

Cancer cells secrete extracellular vesicles (EVs) that contain molecular information, including proteins and RNA. Oncogenic signalling can be transferred via the cargo of EVs to recipient cells and may influence the behaviour of neighbouring cells or cells at a distance. This cargo may contain cancer drivers, such as EGFR, and also phosphorylated (activated) components of oncogenic signalling cascades. Till date, the cancer EV phosphoproteome has not been studied in great detail. In the present study, we used U87 and U87EGFRvIII cells as a model to explore EV oncogenic signalling components in comparison to the cellular profile. EVs were isolated using the VN96 ME-kit and subjected to LC-MS/MS based phosphoproteomics and dedicated bioinformatics. Expression of (phosphorylated)-EGFR was highly increased in EGFRvIII overexpressing cells and their secreted EVs. The increased phosphorylated proteins in both cells and EVs were associated with activated components of the EGFR-signalling cascade and included EGFR, AKT2, MAPK8, SMG1, MAP3K7, DYRK1A, RPS6KA3 and PAK4 kinases. In conclusion, EVs harbour oncogenic signalling networks including multiple activated kinases including EGFR, AKT and mTOR. SIGNIFICANCE: Extracellular vesicles (EVs) are biomarker treasure troves and are widely studied for their biomarker content in cancer. However, little research has been done on the phosphorylated protein profile within cancer EVs. In the current study, we demonstrate that EVs that are secreted by U87-EGFRvIII mutant glioblastoma cells contain high levels of oncogenic signalling networks. These networks contain multiple activated (phosphorylated) kinases, including EGFR, MAPK, AKT and mTOR.


Subject(s)
Extracellular Vesicles , Glioblastoma , Chromatography, Liquid , ErbB Receptors , Feasibility Studies , Humans , Tandem Mass Spectrometry , p21-Activated Kinases
12.
Genomics Proteomics Bioinformatics ; 18(2): 104-119, 2020 04.
Article in English | MEDLINE | ID: mdl-32795611

ABSTRACT

To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.


Subject(s)
Biomarkers, Tumor/analysis , Mass Spectrometry , Biomarkers, Tumor/blood , Cell Line, Tumor , Humans , Lymphoma, Large B-Cell, Diffuse/blood , Male , Neoplasm Proteins/analysis , Peptides/metabolism , Prostatic Neoplasms/metabolism , Proteomics , Reproducibility of Results
13.
Cancers (Basel) ; 11(7)2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31284686

ABSTRACT

Background: The role of statins in prostate cancer (PCa) remains unclear. Conflicting evidence has been found concerning risk reduction with the use of statins on biochemical recurrence (BCR). In this study, we evaluated whether statin use decreases the incidence of advanced PCa in males with elevated prostate-specific antigen (PSA; ≥4.0 ng/mL) levels and determined whether statin use reduces the risk of BCR after radical prostatectomy (RP). Methods: Patients visiting the outpatient urology clinic of the VU Medical Center between 2006 and 2018 with elevated PSA were retrospectively analyzed. Biochemical recurrence after RP was defined as a PSA level of ≥0.2 ng/mL (measured twice). Results: A total of 1566 patients were included, of which 1122 (72%) were diagnosed with PCa. At the time of diagnosis, 252 patients (23%) used statins compared to 83 patients (19%) in the non-malignancy group (p = 0.10). No differences were found in the use of statins between the different risk groups. No correlation was found between the risk of BCR after RP and the use of statins in the total (p = 0.20), the intermediate-risk group (p = 0.63) or the high-risk group (p = 0.14). Conclusion: The use of statins does not affect PCa development/progression in patients with elevated PSA levels, nor the development of BCR after RP.

14.
FEBS Lett ; 593(13): 1580-1597, 2019 07.
Article in English | MEDLINE | ID: mdl-31198995

ABSTRACT

Exosomes are extracellular vesicles (EVs) released from cells under both physiological and pathological conditions, and may, thus, be present in biofluids. Urine is one of the most accessible biofluids implemented in clinical diagnostics. Recent mass spectrometry (MS)-based proteomic analyses have enabled high-throughput, deep proteome profiling of urinary EVs for the discovery, quantification and characterization of cancer-specific exosome biomarkers. The protein cargo of urine exosomes is emerging as an attractive source for biomarkers, not only for urological cancers, such as prostate, bladder and kidney cancer, but potentially also for nonurological cancers, including gastric, lung, oesophageal and colorectal cancer. More recently, exosome proteomics dissected protein cargo in the lumen and at the surface of EVs, and unexpectedly indicated that RNA- and DNA-binding proteins might also be present on vesicular surfaces. Here, we analyse MS-based proteomic data on urinary exosomes from cancer patients, and discuss the potential of urinary exosome-derived biomarkers in cancer.


Subject(s)
Biomarkers, Tumor/urine , Exosomes/metabolism , Neoplasms/pathology , Neoplasms/urine , Proteomics , Humans , Neoplasms/metabolism
15.
J Proteomics ; 192: 27-36, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30071318

ABSTRACT

Nephronophthisis is one of the leading genetic causes of end-stage renal disease in childhood. Early diagnostics and prognostics for nephronophthisis are currently limited. We aimed to identify non-invasive protein biomarkers for nephronophthisis in urinary extracellular vesicles. Extracellular vesicles were isolated from urine of 12 patients with a nephronophthisis-related ciliopathy and 12 age- and gender-matched controls, followed by in-depth label-free LC-MS/MS proteomics analysis of gel fractionated extracellular vesicle proteins. Supervised cluster analysis of proteomic profiles separated patients from controls. We identified 156 differentially expressed proteins with fold change ≥4 in patients compared to controls (P < .05). Importantly, expression levels of discriminating proteins were correlated with chronic kidney disease stage, suggesting possible applications for urinary extracellular vesicle biomarkers in prognostics for nephronophthisis. Enrichment analysis of gene ontology terms revealed GO terms including signaling, actin cytoskeleton and endocytosis among the downregulated proteins in patients, whereas terms related to response to wounding and extracellular matrix organization were enriched among upregulated proteins. Our findings represent the first step towards a non-invasive diagnostic test for nephronophthisis. Further research is needed to determine specificity of the candidate biomarkers. In conclusion, proteomic profiles of urinary extracellular vesicles differentiate nephronophthisis-related ciliopathy patients from healthy controls. SIGNIFICANCE: Nephronophthisis is an important cause of end-stage renal disease in children and is associated with an average diagnostic delay of 3.5 years. This is the first study investigating candidate biomarkers for nephronophthisis using global proteomics analysis of urinary extracellular vesicles in patients with nephronophthisis compared to control individuals. We show that measuring protein markers in urinary extracellular vesicles is a promising approach for non-invasive early diagnostics of nephronophthisis.


Subject(s)
Ciliopathies/urine , Extracellular Vesicles/metabolism , Kidney Diseases, Cystic/urine , Kidney Failure, Chronic/urine , Proteome/metabolism , Adolescent , Adult , Child , Female , Humans , Male
17.
J Extracell Vesicles ; 6(1): 1313091, 2017.
Article in English | MEDLINE | ID: mdl-28717416

ABSTRACT

Extracellular vesicles (EVs) secreted by prostate cancer (PCa) cells contain specific biomarkers and can be isolated from urine. Collection of urine is not invasive, and therefore urinary EVs represent a liquid biopsy for diagnostic and prognostic testing for PCa. In this study, we optimised urinary EV isolation using a method based on heat shock proteins and compared it to gold-standard ultracentrifugation. The urinary EV isolation protocol using the Vn96-peptide is easier, time convenient (≈1.5 h) and no special equipment is needed, in contrast to ultracentrifugation protocol (>3.5 h), making this protocol clinically feasible. We compared the isolated vesicles of both ultracentrifugation and Vn96-peptide by proteome profiling using mass spectrometry-based proteomics (n = 4 per method). We reached a depth of >3000 proteins, with 2400 proteins that were commonly detected in urinary EVs from different donors. We show a large overlap (>85%) between proteins identified in EVs isolated by ultracentrifugation and Vn96-peptide. Addition of the detergent NP40 to Vn96-peptide EV isolations reduced levels of background proteins and highly increased the levels of the EV-markers TSG101 and PDCD6IP, indicative of an increased EV yield. Thus, the Vn96-peptide-based EV isolation procedure is clinically feasibly and allows large-scale protein profiling of urinary EV biomarkers.

18.
Mol Diagn Ther ; 21(4): 385-400, 2017 08.
Article in English | MEDLINE | ID: mdl-28299719

ABSTRACT

Prostate cancer (PCa) is the most common type of cancer and the second leading cause of cancer-related death in men. Despite extensive research, the molecular mechanisms underlying PCa initiation and progression remain unclear, and there is increasing need of better biomarkers that can distinguish indolent from aggressive and life-threatening disease. With the advent of advanced genomic technologies in the last decade, it became apparent that the human genome encodes tens of thousands non-protein-coding RNAs (ncRNAs) with yet to be discovered function. It is clear now that the majority of ncRNAs exhibit highly specific expression patterns restricted to certain tissues and organs or developmental stages and that the expression of many ncRNAs is altered in disease and cancer, including cancer of the prostate. Such ncRNAs can serve as important biomarkers for PCa diagnosis, prognosis, or prediction of therapy response. In this review, we give an overview of the different types of ncRNAs and their function, describe ncRNAs relevant for the diagnosis and prognosis of PCa, and present emerging new aspects of ncRNA research that may contribute to the future utilization of ncRNAs as clinically useful therapeutic targets.


Subject(s)
Antigens, Neoplasm/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/diagnosis , RNA, Untranslated/genetics , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/blood , Biomarkers, Tumor/urine , Early Detection of Cancer/methods , High-Throughput Nucleotide Sequencing , Humans , Male , Molecular Targeted Therapy , Precision Medicine , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA, Untranslated/blood , RNA, Untranslated/classification , RNA, Untranslated/urine
19.
Oncotarget ; 7(13): 16676-87, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26918338

ABSTRACT

The centrosome plays a key role in cancer invasion and metastasis. However, it is unclear how abnormal centrosome numbers are regulated when prostate cancer (PCa) cells become metastatic. CP110 was previously described for its contribution of centrosome amplification (CA) and early development of aggressive cell behaviour. However its regulation in metastatic cells remains unclear. Here we identified miR-129-3p as a novel metastatic microRNA. CP110 was identified as its target protein. In PCa cells that have metastatic capacity, CP110 expression was repressed by miR-129-3p. High miR-129-3p expression levels increased cell invasion, while increasing CP110 levels decreased cell invasion. Overexpression of CP110 in metastatic PCa cells resulted in a decrease in the number of metastasis. In tissues of PCa patients, low CP110 and high miR-129-3p expression levels correlated with metastasis, but not with the expression of genes related to EMT. Furthermore, overexpression of CP110 in metastatic PCa cells resulted in excessive-CA (E-CA), and a change in F-actin distribution which is in agreement with their reduced metastatic capacity. Our data demonstrate that miR-129-3p functions as a CA gatekeeper in metastatic PCa cells by maintaining pro-metastatic centrosome amplification (CA) and preventing anti-metastatic E-CA.


Subject(s)
Cell Cycle Proteins/biosynthesis , Centrosome/pathology , Gene Expression Regulation, Neoplastic/physiology , MicroRNAs/metabolism , Microtubule-Associated Proteins/biosynthesis , Phosphoproteins/biosynthesis , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Humans , Male , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Rats
20.
J Circ Biomark ; 5: 4, 2016.
Article in English | MEDLINE | ID: mdl-28936252

ABSTRACT

Urine exosomes (extracellular vesicles; EVs) contain (micro)RNA (miRNA) and protein biomarkers that are useful for the non-invasive diagnosis of various urological diseases. However, the urinary Tamm-Horsfall protein (THP) complex, which forms at reduced temperatures, may affect EV isolation and may also lead to contamination by other molecules including microRNAs (miRNAs). Therefore, we compared the levels of three miRNAs within the purified EV fraction and THP- protein-network. Urine was collected from healthy donors and EVs were isolated by ultracentrifugation (UC), two commercial kits or sepharose size-exclusion chromatography (SEC). SEC enables the separation of EVs from protein-complexes in urine. After UC, the isolation of EV-miRNA was compared with two commercial kits. The EV isolation efficiency was evaluated by measuring the EV protein markers, Alix and TSG101, CD63 by Western blotting, or miR-375, miR-204 and miR-21 by RT-qPCR. By using commercial kits, EV isolation resulted in either low yields or dissimilar miRNA levels. Via SEC, the EVs were separated from the protein-complex fraction. Importantly, a different ratio was observed between the three miRNAs in the protein fraction compared to the EV fraction. Thus, protein-complexes within urine may influence EV-biomarker studies. Therefore, the characterization of the isolated EV fraction is important to obtain reproducible results.

SELECTION OF CITATIONS
SEARCH DETAIL
...