Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 294(48): 18324-18336, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31653700

ABSTRACT

Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29's C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering ß-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, ß-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering ß-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel's open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelial Sodium Channels/metabolism , Heat-Shock Proteins/metabolism , Receptors, Peptide/metabolism , Animals , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Dogs , Endoplasmic Reticulum/metabolism , Epithelial Sodium Channels/genetics , Golgi Apparatus/metabolism , Heat-Shock Proteins/genetics , Humans , Madin Darby Canine Kidney Cells , Mice , Protein Transport , RNA Interference , Receptors, Peptide/genetics
2.
Am J Physiol Cell Physiol ; 307(8): C701-9, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24944201

ABSTRACT

The epithelial Na(+) channel (ENaC) plays a key role in the regulation of blood pressure and airway surface liquid volume. ERp29 is a 29-kDa thioredoxin-homologous endoplasmic reticulum (ER) protein that has only a single cysteine instead of the usual thioredoxin CXXC motif. Our group previously demonstrated that ERp29 promotes biogenesis of the cystic fibrosis transmembrane conductance regulator (CFTR). On the basis of similarities of CFTR and ENaC trafficking, we hypothesized that ERp29 would also regulate ENaC biogenesis and functional expression. In epithelial cells, overexpression of wild-type (wt) ERp29 increased ENaC functional expression [amiloride-sensitive short-circuit current (Isc)] in Ussing chamber experiments, as well as the abundance of the cleaved form of γ-ENaC in whole cell lysates. In contrast, siRNA-mediated depletion of ERp29 or overexpression of a mutant ERp29 lacking its single cysteine (C157S ERp29) decreased ENaC functional expression. Cells in which wt ERp29 was overexpressed had a smaller fractional increase in amiloride-sensitive Isc when trypsin was applied to the apical surface to activate uncleaved ENaC, while cells in which C157S ERp29 was overexpressed or ERp29 was depleted had a significantly greater fractional increase in amiloride-sensitive Isc in response to trypsin. Interestingly, these observations were not associated with altered expression of ß-ENaC at the apical surface. Instead, ERp29 appeared to promote the interaction of ß-ENaC with the Sec24D cargo recognition component of the coat complex II ER exit machinery. Together, these data support the hypothesis that ERp29 directs ENaC toward the Golgi, where it undergoes cleavage during its biogenesis and trafficking to the apical membrane.


Subject(s)
Epithelial Sodium Channels/metabolism , Heat-Shock Proteins/physiology , Animals , Cell Membrane/metabolism , Dogs , Gene Expression , Humans , Madin Darby Canine Kidney Cells , Membrane Potentials , Mice , Protein Processing, Post-Translational , Protein Transport , Proteolysis , Vesicular Transport Proteins/metabolism , Xenopus laevis
3.
Cell Rep ; 4(2): 302-315, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23850286

ABSTRACT

The TRPM8 ion channel is expressed in sensory neurons and is responsible for sensing environmental cues, such as cold temperatures and chemical compounds, including menthol and icilin. The channel functional activity is regulated by various physical and chemical factors and is likely to be preconditioned by its molecular composition. Our studies indicate that the TRPM8 channel forms a structural-functional complex with the polyester poly-(R)-3-hydroxybutyrate (PHB). We identified by mass spectrometry a number of PHB-modified peptides in the N terminus of the TRPM8 protein and in its extracellular S3-S4 linker. Removal of PHB by enzymatic hydrolysis and site-directed mutagenesis of both the serine residues that serve as covalent anchors for PHB and adjacent hydrophobic residues that interact with the methyl groups of the polymer resulted in significant inhibition of TRPM8 channel activity. We conclude that the TRPM8 channel undergoes posttranslational modification by PHB and that this modification is required for its normal function.


Subject(s)
Hydroxybutyrates/metabolism , Polyesters/metabolism , TRPM Cation Channels/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Culture Techniques , HEK293 Cells , Humans , Mice , Microscopy, Fluorescence , Molecular Sequence Data , Prohibitins , Protein Processing, Post-Translational , Signal Transduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship , TRPM Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...