Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38248407

ABSTRACT

A colloidal gold-based lateral flow immunoassay was developed for the rapid quantitative detection of Cystatin-C in serum and whole blood. This device has an assay time of 15 min, making it a convenient point-of-care diagnostic tool. The device has a quantification range spanning from 0.5 to 7.5 µg/mL, with a lower limit of detection at 0.18 µg/mL. To validate its accuracy, the test was compared to a standard nephelometric immunoassay, and the results exhibited a robust linear correlation with an adjusted r2 value of 0.95. Furthermore, the device demonstrates satisfactory levels of analytical performance in terms of precision, sensitivity, and interference, indicating its potential for precise Cystatin-C quantification, particularly in renal-failure patients. Notably, the Cystatin-C-LFA device also demonstrates satisfactory stability, as a 30-day accelerated stability study at 50 °C showed no change in the device performance, indicating a long shelf life for the product when stored at room temperature.


Subject(s)
Biological Assay , Colorimetry , Humans , Immunoassay , Point-of-Care Systems
2.
Biosensors (Basel) ; 12(3)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35323452

ABSTRACT

Au nanoparticles (AuNPs) have been used as signal reporters in colorimetric lateral flow immunoassays (LFAs) for decades. However, it remains a major challenge to significantly improve the detection sensitivity of traditional LFAs due to the low brightness of AuNPs. As an alternative approach, we overcome this problem by utilizing 150 nm gold nanoshells (AuNSs) that were engineered by coating low-density silica nanoparticles with a thin layer of gold. AuNSs are dark green, have 14 times larger surface area, and are approximately 35 times brighter compared to AuNPs. In this study, we used detection of thyroid-stimulating hormone (TSH) in a proof-of-concept assay. The limit of detection (LOD) with AuNS-based LFA was 0.16 µIU/mL, which is 26 times more sensitive than the conventional colorimetric LFA that utilizes AuNP as a label. The dynamic range of the calibration curve was 0.16−9.5 µIU/mL, making it possible to diagnose both hyperthyroidism (<0.5 µIU/mL) and hypothyroidism (>5 µIU/mL) using AuNS-based LFA. Thus, the developed device has a strong potential for early screening and diagnosis of diseases related to the thyroid hormone.


Subject(s)
Metal Nanoparticles , Nanoshells , Gold , Immunoassay , Limit of Detection , Thyrotropin
3.
PLoS One ; 16(11): e0259670, 2021.
Article in English | MEDLINE | ID: mdl-34739528

ABSTRACT

Large-scale genomic alterations play an important role in disease, gene expression, and chromosome evolution. Optical DNA mapping (ODM), commonly categorized into sparsely-labelled ODM and densely-labelled ODM, provides sequence-specific continuous intensity profiles (DNA barcodes) along single DNA molecules and is a technique well-suited for detecting such alterations. For sparsely-labelled barcodes, the possibility to detect large genomic alterations has been investigated extensively, while densely-labelled barcodes have not received as much attention. In this work, we introduce HMMSV, a hidden Markov model (HMM) based algorithm for detecting structural variations (SVs) directly in densely-labelled barcodes without access to sequence information. We evaluate our approach using simulated data-sets with 5 different types of SVs, and combinations thereof, and demonstrate that the method reaches a true positive rate greater than 80% for randomly generated barcodes with single variations of size 25 kilobases (kb). Increasing the length of the SV further leads to larger true positive rates. For a real data-set with experimental barcodes on bacterial plasmids, we successfully detect matching barcode pairs and SVs without any particular assumption of the types of SVs present. Instead, our method effectively goes through all possible combinations of SVs. Since ODM works on length scales typically not reachable with other techniques, our methodology is a promising tool for identifying arbitrary combinations of genomic alterations.


Subject(s)
DNA Barcoding, Taxonomic , Markov Chains
4.
Nanomaterials (Basel) ; 9(10)2019 Oct 19.
Article in English | MEDLINE | ID: mdl-31635101

ABSTRACT

This paper presents a plasma display device (PDD) based on laser-induced graphene nanoribbons (LIGNs), which were directly fabricated on polyimide sheets. Superior field electron emission (FEE) characteristics, viz. a low turn-on field of 0.44 V/µm and a large field enhancement factor of 4578, were achieved for the LIGNs. Utilizing LIGNs as a cathode in a PDD showed excellent plasma illumination characteristics with a prolonged plasma lifetime stability. Moreover, the LIGN cathodes were directly laser-patternable. Such superior plasma illumination performance of LIGN-based PDDs has the potential to make a significant impact on display technology.

5.
J Chem Phys ; 149(21): 215101, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30525714

ABSTRACT

Nanochannels provide a means for detailed experiments on the effect of confinement on biomacromolecules, such as DNA. Here we introduce a model for the complete unfolding of DNA from the circular to linear configuration. Two main ingredients are the entropic unfolding force and the friction coefficient for the unfolding process, and we describe the associated dynamics by a non-linear Langevin equation. By analyzing experimental data where DNA molecules are photo-cut and unfolded inside a nanochannel, our model allows us to extract values for the unfolding force as well as the friction coefficient for the first time. In order to extract numerical values for these physical quantities, we employ a recently introduced Bayesian inference framework. We find that the determined unfolding force is in agreement with estimates from a simple Flory-type argument. The estimated friction coefficient is in agreement with theoretical estimates for motion of a cylinder in a channel. We further validate the estimated friction constant by extracting this parameter from DNA's center-of-mass motion before and after unfolding, yielding decent agreement. We provide publically available software for performing the required image and Bayesian analysis.


Subject(s)
DNA/chemistry , Nanostructures , Nucleic Acid Conformation , Bayes Theorem , Likelihood Functions , Models, Theoretical , Nanotechnology/methods , Stochastic Processes
6.
Faraday Discuss ; 173: 415-28, 2014.
Article in English | MEDLINE | ID: mdl-25467392

ABSTRACT

We show that a partially reduced graphene oxide electrocatalyst, synthesized by electrochemical reduction of graphene oxide (GO), displays significantly enhanced catalytic activity towards the oxygen reduction reaction (ORR) in alkaline solutions compared to the starting GO. The electrochemical partial reduction of GO was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy. Electrochemical impedance spectroscopy (EIS) verified the enhanced electron transfer ability of the electrochemically reduced graphene oxide (ErGO) compared to GO. The resultant ErGO electrode showed enhanced capacitance and an ORR onset potential of -0.11 V vs. Ag/AgCl, similar to that of a nitrogen doped reduced graphene oxide (NrGO) electrode produced by a hydrothermal process. However the ErGO exhibited considerably lower electron transfer numbers (2.0-3.3 at a potential range of -0.4 V to -1.0 V) indicating that although both catalysts operate under combined 4e(-) and 2e(-) ORR processes, ErGO follows a more predominant 2e(-) pathway. The ORR process in ErGO has been linked to the presence of quinone functional groups, which favour the 2e(-) ORR pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...