Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Anaesthesiol Scand ; 60(1): 69-78, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26192561

ABSTRACT

BACKGROUND: Stress and strain are parameters to describe respiratory mechanics during mechanical ventilation. Calculations of stress require invasive and difficult to perform esophageal pressure measurements. The hypothesis of the present study was: Can lung stress be reliably calculated based on non-invasive lung volume measurements, during a decremental Positive end-expiratory pressure (PEEP) trial in mechanically ventilated patients with different diseases? METHODS: Data of 26 pressure-controlled ventilated patients admitted to the ICU with different lung conditions were retrospectively analyzed: 11 coronary artery bypass graft (CABG), 9 neurology, and 6 lung disorders. During a decremental PEEP trial (from 15 to 0 cmH2 O in three steps) end-expiratory lung volume (EELV) measurements were performed at each PEEP step, without interruption of mechanical ventilation. Strain, specific elastance, and stress were calculated for each PEEP level. Elastance was calculated as delta PEEP divided by delta PEEP volume, whereas specific elastance is elastance times the FRC. Stress was calculated as specific elastance times the strain. Global strain was divided into dynamic (tidal volume) and static (PEEP) strain. RESULTS: Strain calculations based on FRC showed mainly changes in static component, whereas calculations based on EELV showed changes in both the static and dynamic component of strain. Stress calculated from EELV measurements was 24.0 ± 2.7 and 13.1 ± 3.8 cmH2 O in the lung disorder group at 15 and 5 cmH2 O PEEP. For the normal lungs, the stress values were 19.2 ± 3.2 and 10.9 ± 3.3 cmH2 O, respectively. These values are comparable to earlier publications. Specific elastance calculations were comparable in patients with neurologic and lung disorders, and lower in the CABG group due to recruitment in this latter group. CONCLUSION: Stress and strain can reliably be calculated at the bedside based on non-invasive EELV measurements during a decremental PEEP trial in patients with different diseases.


Subject(s)
Critical Care , Lung/physiopathology , Respiration, Artificial/adverse effects , Stress, Physiological , Adult , Aged , Algorithms , Elasticity , Female , Humans , Intensive Care Units , Lung Volume Measurements , Male , Middle Aged , Positive-Pressure Respiration , Respiratory Function Tests , Retrospective Studies , Tidal Volume
2.
Minerva Anestesiol ; 79(9): 983-92, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23811623

ABSTRACT

BACKGROUND: Setting the optimal level of positive end-expiratory pressure (PEEP) in critically ill patients remains a matter of debate. "Best" PEEP is regarded as minimal lung collapse and overdistention to prevent lung injury. In this study, global and regional variables were evaluated in a porcine model to identify which variables should be used to visualize "best" PEEP. METHODS: Eight pigs (28-31 kg) were studied during an incremental and decremental PEEP trial before and after the induction of acute lung injury (ALI) with oleic acid. Arterial oxygenation, compliance, lung volume, dead space, esophageal pressure and electrical impedance tomography (EIT) were recorded at the end of each PEEP step. RESULTS: After ALI, "best" PEEP was comparable at 15 cmH2O between regional compliance of the dorsal lung region by EIT and the global indicators: dynamic compliance, arterial oxygenation, alveolar dead space and venous admixture. After ALI, the intratidal gas distribution was able to detect regional overdistention at 15 cmH2O PEEP. "Best" PEEP based on transpulmonary pressure was lower and no optimal level could be found based on lung volume measurements alone. In addition, the recruitment phase significantly improved end-expiratory lung volume, PaO2, venous admixture and regional and global compliance, both in ALI and the "healthy" lung. CONCLUSION: Most of the evaluated parameters indicate comparable 'best' PEEP levels. However, a combination of these parameters, and especially EIT-derived intratidal gas distribution, might provide additional information. The application of lung recruitment was beneficial in both ALI and the "healthy" lung.


Subject(s)
Acute Lung Injury/therapy , Positive-Pressure Respiration/methods , Acute Lung Injury/chemically induced , Animals , Electric Impedance , Hemodynamics/physiology , Oleic Acid , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...