Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; : 1-12, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416139

ABSTRACT

Sixty growing male pigs were used to test the hypothesis that high dietary Ca content reduces P absorption to a greater extent in microbial phytase-supplemented diets via reducing inositol phosphate (IP) degradation and enhancing P precipitation. Pigs were equally allotted over diets with three Ca contents 2·0, 5·8 and 9·6 g/kg with or without microbial phytase (0 v. 500 FTU/kg) in a 2 × 3 factorial arrangement. Faeces and urine were collected at the end of the 21-d experimental period. Subsequently, pigs were euthanised and digesta quantitatively collected from different gastrointestinal tract (GIT) segments. Increasing dietary Ca content reduced apparent P digestibility in all GIT segments posterior to the stomach (P < 0·001), with greater effect in phytase-supplemented diets in the distal small intestine (Pinteraction = 0·007) and total tract (Pinteraction = 0·023). Nonetheless, increasing dietary Ca to 5·8 g/kg enhanced P retention, but only in phytase-supplemented diets. Ileal IP6 degradation increased with phytase (P < 0·001) but decreased with increasing dietary Ca content (P = 0·014). Proportion of IP esters in total IP (∑IP) indicated that IP6/∑IP was increased while IP4/∑IP and IP3/∑IP were reduced with increasing dietary Ca content and also with a greater impact in phytase-supplemented diets (Pinteraction = 0·025, 0·018 and 0·009, respectively). In all GIT segments, P solubility was increased with phytase (P < 0·001) and tended to be reduced with dietary Ca content (P < 0·096). Measurements in GIT segments showed that increasing dietary Ca content reduced apparent P digestibility via reducing IP degradation and enhancing P precipitation, with a greater impact in phytase-supplemented diets due to reduced IP degradation.

2.
Poult Sci ; 101(2): 101623, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34936962

ABSTRACT

The novel chelator, L-glutamic acid, N,N-diacetic acid (GLDA) can be used as a dietary ingredient to safely reduce Zn supplementation in complete feed, without compromising the Zn status of farm animals. The objective of this study was to study dietary tolerance, bioaccumulation, and evaluate the safety of GLDA when supplemented in broiler diets at 0, 100, 300, 1000, 3,000, and 10,000 mg/kg. A total of 480 one-day-old Ross 308 male broilers were randomly allocated to 48 pens and fed one of the 6 experimental diets. Production performance was used to assess tolerance to the additive. At trial end, toxicity was evaluated using hematology, plasma biochemistry (n = 144) and gross necropsy (n = 48). Residue levels of GLDA were assessed in liver, kidney and breast tissue of birds used for necropsy. Performance showed an increase (P < 0.05) in body weight for GLDA inclusion at 300 mg/kg. A decrease on the measured performance parameters was found for the 10,000 mg/kg GLDA inclusion level (P < 0.05). The additive was added as a tetra-sodium salt, leading to sodium levels being 2.5 times higher in the latter treatment compared to the control diet which may have led to impaired intestinal barrier function. Mortality was not different between treatments. Residue levels for GLDA at the highest inclusion indicate that 0.0005% of total GLDA consumption is accumulated in breast tissue. Higher values of GLDA were found in kidney and liver at the highest inclusion level, potentially confirming that the small fraction of GLDA absorbed was readily excreted by the animal. At 100 and 300 mg/kg GLDA inclusion there were negligible amounts of GLDA present in all tissues measured. The present experiment demonstrated a high dietary tolerance to GLDA in broilers and indicated that GLDA does not pose a significant risk to food safety when supplemented below 3,000 mg/kg.


Subject(s)
Animal Nutritional Physiological Phenomena , Chickens , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Glutamic Acid , Male
3.
Poult Sci ; 100(3): 100913, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33652535

ABSTRACT

Chelating agents can be used to improve the nutritional availability of trace minerals within the gastrointestinal tract. This study was conducted to determine the effect of a novel chelating agents, L-glutamic acid N,N-diacetic acid (GLDA), a biodegradable alternative to ethylenediaminetetraacetic acid on the nutritional bioavailability of zinc in broilers. Twelve dietary treatments were allocated to 96 pens in a randomized block design. Pens contained 10 Ross 308 male broilers in a factorial design with 6 incremental zinc levels (40, 45, 50, 60, 80, and 120 ppm of total Zn), with and without inclusion of GLDA (0 and 100 ppm) as respective factors. Experimental diets were supplied from day 7 to 21/22 and serum, liver and tibia Zn content were determined in 3 birds per pen. Growth performance and liver characteristics were not affected by dietary treatments, but both supplemental Zn and GLDA enhanced tibia and serum zinc concentration. The positive effect of GLDA was observed at all levels of the dietary Zn addition. The amount of zinc needed to reach 95% of the asymptotic Zn response was determined using nonlinear regression. When GLDA was included in the diet, based on tibia Zn, the same Zn status was achieved with a 19 ppm smaller Zn dose while based on serum Zn this was 27 ppm less Zn. Dietary GLDA reduces supplemental Zn needs to fulfill nutritional demands as defined by tibia Zn and serum Zn response. Considering the positive effect on the nutritional availability of Zn in broilers, GLDA presents an opportunity as biodegradable additive, to reduce Zn supplementation to livestock and thereby reducing Zn excretion into the environment, while fulfilling the nutrition Zn needs of farmed animals.


Subject(s)
Chickens , Glutamic Acid , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Male , Zinc
4.
Food Chem Toxicol ; 117: 36-65, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28859885

ABSTRACT

Within the frame of the EU-funded MARLON project, background data were reviewed to explore the possibility of measuring health indicators during post-market monitoring for potential effects of feeds, particularly genetically modified (GM) feeds, on livestock animal health, if applicable. Four case studies (CSs) of potential health effects on livestock were framed and the current knowledge of a possible effect of GM feed was reviewed. Concerning allergenicity (CS-1), there are no case-reports of allergic reactions or immunotoxic effects resulting from GM feed consumption as compared with non-GM feed. The likelihood of horizontal gene transfer (HGT; CS-2) of GMO-related DNA to different species is not different from that for other DNA and is unlikely to raise health concerns. Concerning mycotoxins (CS-3), insect-resistant GM maize may reduce fumonisins contamination as a health benefit, yet other Fusarium toxins and aflatoxins show inconclusive results. For nutritionally altered crops (CS-4), the genetic modifications applied lead to compositional changes which require special considerations of their nutritional impacts. No health indicators were thus identified except for possible beneficial impacts of reduced mycotoxins and nutritional enhancement. More generally, veterinary health data should ideally be linked with animal exposure information so as to be able to establish cause-effect relationships.


Subject(s)
Animal Feed/adverse effects , Food Hypersensitivity/veterinary , Gene Transfer, Horizontal , Livestock/physiology , Mycotoxins/toxicity , Plants, Genetically Modified/adverse effects , Animals , DNA, Plant/genetics , European Union , Food Hypersensitivity/etiology , Humans , Nutritive Value , Plants, Genetically Modified/genetics , Product Surveillance, Postmarketing , Risk Assessment
5.
Food Chem Toxicol ; 117: 66-78, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28993215

ABSTRACT

This review, which has been prepared within the frame of the European Union (EU)-funded project MARLON, surveys the organisation and characteristics of specific livestock and feed production chains (conventional, organic, GM-free) within the EU, with an emphasis on controls, regulations, traceability, and common production practices. Furthermore, an overview of the origin of animal feed used in the EU as well as an examination of the use of genetically modified organisms (GMOs) in feed is provided. From the data, it shows that livestock is traceable at the herd or individual level, depending on the species. Husbandry practices can vary widely according to geography and animal species, whilst controls and checks are in place for notifiable diseases and general health symptoms (such as mortality, disease, productive performance). For feeds, it would be possible only to make coarse estimates, at best, for the amount of GM feed ingredients that an animal is exposed to. Labeling requirements are apparently correctly followed. Provided that confounding factors are taken into account, practices such as organic agriculture that explicitly involve the use of non-GM feeds could be used for comparison to those involving the use of GM feed.


Subject(s)
Animal Diseases/prevention & control , Animal Feed/adverse effects , Animal Husbandry/legislation & jurisprudence , Crops, Agricultural , Livestock , Plants, Genetically Modified/adverse effects , Product Surveillance, Postmarketing , Animal Diseases/diagnosis , Animals , Aquaculture , European Union , Food Labeling , Food Safety , Plants, Genetically Modified/genetics , Surveys and Questionnaires
6.
J Agric Food Chem ; 65(4): 964-972, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28059513

ABSTRACT

The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group.


Subject(s)
Chickens/metabolism , Lysine/chemistry , Methylurea Compounds/chemistry , Swine/metabolism , Animal Feed/analysis , Animals , Digestion , Homoarginine/chemistry , Homoarginine/metabolism , Lysine/metabolism , Methylurea Compounds/metabolism
7.
J Appl Phycol ; 28(6): 3511-3525, 2016.
Article in English | MEDLINE | ID: mdl-28035175

ABSTRACT

The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically feasible value chain. In this study, such a biorefinery approach is presented for the green seaweed Ulva lactuca containing 225 g protein (N × 4.6) kg-1 dry matter (DM). The sugars in the biomass were solubilised by hot water treatment followed by enzymatic hydrolysis and centrifugation resulting in a sugar-rich hydrolysate (38.8 g L-1 sugars) containing glucose, rhamnose and xylose, and a protein-enriched (343 g kg-1 in DM) extracted fraction. This extracted fraction was characterised for use in animal feed, as compared to U. lactuca biomass. Based on the content of essential amino acids and the in vitro N (85 %) and organic matter (90 %) digestibility, the extracted fraction seems a promising protein source in diets for monogastric animals with improved characteristics as compared to the intact U. lactuca. The gas production test indicated a moderate rumen fermentation of U. lactuca and the extracted fraction, about similar to that of alfalfa. Reduction of the high content of minerals and trace elements may be required to allow a high inclusion level of U. lactuca products in animal diets. The hydrolysate was used successfully for the production of acetone, butanol, ethanol and 1,2-propanediol by clostridial fermentation, and the rhamnose fermentation pattern was studied.

8.
BMC Physiol ; 14: 6, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25189710

ABSTRACT

BACKGROUND: Maternal diet during pregnancy can modulate skeletal muscle development of the offspring. Previous studies in pigs have indicated that a fat supplemented diet during pregnancy can improve piglet outcome, however, this is in contrast to human studies suggesting adverse effects of saturated fats during pregnancy. This study aimed to investigate the impact of a fat supplemented (palm oil) "high fat" diet on skeletal muscle development in a porcine model. Histological and metabolic features of the biceps femoris muscle obtained from 7-day-old piglets born to sows assigned to either a commercial (C, n = 7) or to an isocaloric fat supplementation diet ("high fat" HF, n = 7) during pregnancy were assessed. RESULTS: Offspring exposed to a maternal HF diet demonstrated enhanced muscular development, reflected by an increase in fractional growth rate, rise in myofibre cross-sectional area, increased storage of glycogen and reduction in lipid staining of myofibres. Although both groups had similar intramuscular protein and triglyceride concentrations, the offspring born to HF mothers had a higher proportion of arachidonic acid (C20:4n6) and a reduction in α-linolenic acid (C18:3n3) compared to C group offspring. The HF group muscle also exhibited a higher ratio of C20:3n6 to C20:4n6 and total n-6 to n-3 in conjunction with up-regulation of genes associated with free fatty acid uptake and biogenesis. CONCLUSION: In conclusion, a HF gestational diet accelerates the maturation of offspring biceps femoris muscle, reflected in increased glycolytic metabolism and fibre cross sectional area, differences accompanied with a potential resetting of myofibre nutrient uptake.


Subject(s)
Dietary Supplements , Muscle, Skeletal/drug effects , Muscle, Skeletal/embryology , Plant Oils/pharmacology , Animals , Animals, Newborn , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Fatty Acids/analysis , Female , Lipid Metabolism , Male , Maternal Nutritional Physiological Phenomena , Muscle Proteins/metabolism , Muscle, Skeletal/enzymology , Palm Oil , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...