Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36365497

ABSTRACT

Advanced wireless communication technology claims miniaturized, reconfigurable, highly efficient, and flexible meta-devices for various applications, including conformal implementation, flexible antennas, wearable sensors, etc. Therefore, bearing these challenges in mind, a dual-band flexible metamaterial absorber (MMA) with frequency-reconfigurable characteristics is developed in this research. The geometry of the proposed MMA comprises a square patch surrounded by a square ring, which is mounted over a copper-backed flexible dielectric substrate. The top surface of the MMA is made of silver nanoparticle ink and a middle polyethylene terephthalate (PET) substrate backed by a copper groundsheet. The proposed MMA shows an absorption rate of above 99% at 24 and 35 GHz. In addition, the absorption features are also studied for different oblique incident angles, and it is found that the proposed MMA remains stable for θ = 10-50°. The frequency tunability characteristics are achieved by stimulating the capacitance of the varactor diode, which connects the inner patch with the outer ring. To justify the robustness and conformability of the presented MMA, the absorption features are also studied by bending the MMA over different radii of an arbitrary cylinder. Moreover, a multiple-reflection interference model is developed to justify the simulated and calculated absorption of the proposed MMA. It is found that the simulated and calculated results are in close agreement with each other. This kind of MMA could be useful for dual-band sensing and filtering operations.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234486

ABSTRACT

The efficient control of optical light at the nanoscale level attracts marvelous applications, including thermal imaging, energy harvesting, thermal photovoltaics, etc. These applications demand a high-bandwidth, thermally robust, angularly stable, and miniaturized absorber, which is a key challenge to be addressed. So, in this study, the simple and cost-effective solution to attain a high-bandwidth nanostructured absorber is demonstrated. The designed nanoscale absorber is composed of a simple and plain circular ring of nickel metal, which possesses many interesting features, including a miniaturized geometry, easily fabricable design, large operational bandwidth, and polarization insensitivity, over the previously presented absorbers. The proposed nanoscale absorber manifests an average absorption of 93% over a broad optical window from 400 to 2800 nm. Moreover, the detailed analysis of the absorption characteristics is also performed by exciting the optical light's various incident and polarization angles. From the examined outcome, it is concluded that the nanostructured absorber maintains its average absorption of 80% at oblique incident angles in a broad wavelength range from 400 to 2800 nm. Owing to its appealing functionalities, such as the large bandwidth, simple geometry, low cost, polarization insensitivity, and thermal robustness of the constituting metal, nickel (Ni), this nano-absorber is made as an alternative for the applications of energy harvesting, thermal photovoltaics, and emission.

3.
J Opt Soc Am A Opt Image Sci Vis ; 39(1): 136-142, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35200983

ABSTRACT

The inherent bandwidth limitations make it quite challenging to achieve the wideband response of metamaterial absorbers. In this paper, a metamaterial absorber based on triangular metallic rings has been proposed to attain wideband absorption (>90%) in the wavelength span of 400-750 nm. The absorber is constituted of periodically placed unit cells, where each unit cell contains three concentric triangular chromium metal rings. The absorption of the design remains stable (above 70%) over a wide range of incidence obliquity (0°-60°) under transverse electric (TE) and transverse magnetic (TM) polarization. Further, the absorber shows polarization-insensitive behavior over different polarization states. The low-cost and thermally endurable chromium metal, wide absorption, and wide-angle stability make the proposed absorber a suitable candidate for applications like solar energy harvesting, solar detectors, solar thermal photovoltaics, and photonic devices.

4.
Appl Opt ; 60(29): 9160-9166, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34623998

ABSTRACT

Terahertz (THz) metamaterial absorbers have realized a prodigious reputation due to the limitation of natural absorbing materials in this range. Getting wideband absorption characteristics is challenging and arduous, especially in the THz band. Self-similar repeated fractal elements offer a promising solution to attain broadband absorption response due to their inherent multiple resonance characteristics. Therefore, by captivating the advantage of fractal geometry, we proposed a dual and wideband meta-absorber operating in the THz regime. The metamaterial absorber design comprises the assembly of self-similar square-shaped blocks arranged in a specific pattern to construct the fractal geometry. The proposed THz absorber demonstrates 90% absorption under normal incident waves for two operating bands from 9.5-10.55 THz and 12.3-13.35 THz. The suggested metamaterial absorber also shows good and stable absorption responses under different oblique incidence angles for transverse electric (TE) and transverse magnetic (TM) wave polarization. Moreover, this absorber manifests over 85% absorptivity in its entire operating range (9-14 THz) under the incidence angle of 60° and 70° for TM mode. Furthermore, it gives a polarization-insensitive behavior under the effect of different polarization angles. This kind of wideband absorber catches fascinating applications in THz detection, imaging, cloaking, and optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...