Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 338: 139622, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37487982

ABSTRACT

The presence of heavy metal (HM) ions, such as lead, cadmium, and chromium in industrial wastewater discharge are major contaminants that pose a risk to human health. These HMs should separate from the wastewater to ensure the reuse of the discharged water in the process and mitigate their environmental impacts. The distinctive mechanical properties of 2D graphene oxide (GO), and the antifouling characteristics of metal oxides (ZnO/NiO) nanoparticles combined to produce composites supporting special features for wastewater treatment. This study employed solution casting and phase inversion methods to synthesize PSF-based GO, ZnO-GO, and ZnO-GO-NiO mixed matrix membranes and the effects of variation in composition on the removal of lead (Pb2+) and cadmium (Cd2+) ion was examined. Several characterization techniques including X-ray diffraction analysis, scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy were applied to analyze the synthesized NPs and MMMs. The composite membranes were also analyzed in terms of their porosity, permeability, hydrophilicity, surface roughness, zeta potential, thermal stability, mechanical strength, and flux regeneration at various transmembrane pressures (2-3 kgcm-2), and pH value (5.5). The highest adsorption capacities were measured to be 308.16 mg g-1 and 354.80 mg g-1 for Pb (II) and Cd (II), respectively, for membrane (M4_A) having 0.3 wt% of ZnO-GO-NiO nanocomposite, at 200 mg L-1 of feed concentration and 1.60 mL min-1 of permeate flux. The Pb (II) and Cd (II) adsorption breakthrough curves were created, and the results of the experiment were compared with the data of the Thomas model.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Zinc Oxide , Humans , Cadmium/analysis , Wastewater , Lead/analysis , Metals, Heavy/analysis , Oxides/analysis , Adsorption , Water Pollutants, Chemical/analysis , Kinetics , Ions/analysis
2.
Chemosphere ; 303(Pt 2): 135073, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35644232

ABSTRACT

Mixed matrix membranes (MMMs) are synthesized for efficient CO2 separation released from various anthropogenic sources, which are due to global environmental concerns. The synergetic effect of porous nitrogen-rich, CO2-philic filler and polymer in mixed matrix-based membranes (MMMs) can separate CO2 competent. The development of various loadings of porphyrin poly(N-isopropyl Acryl Amide) (P-NIPAM)as functionalized organic fillers (5-20%) in polysulfone (PSU) through solution casting is carried out followed by the various characterizations including field emission scanning electron microscopy (FESEM), X-ray diffraction analysis (XRD), Fourier Transform Infrared Spectrometer(FT-IR) analysis and pure and mixed gas permeations ranging from 2 to 10 bar feed pressure. Due to both organic species interactions in the matrix, well-distributed fillers and homogenous surfaces, and cross-sectional structures were observed due to π-π interactions and Lewis's basic functionalities. The strong affinity of porous nitrogen-rich and CO2-philic fillers through gas permeation analysis showed high CO2/CH4 and CO2/N2 gas performance that surpassed Robeson's upper bound limit. Comparatively, MMMs showed improved CO2/CH4 permeabilities from 87.5 ± 0.5 Barrer to 88.2 ± 0.9 Barrer than pure polymer matrix. For CO2/N2, CO2 permeabilities improved to 75 ± 0.8 Barrer than pure polymer matrix. For both gas pairs (CO2/CH4, CO2/N2), respective pureselectivities (84%; 86%) and binary selectivities (85% and 85%)were improved. Various theoretical gas permeation models were used to predict CO2 permeabilities for MMMs from which the modified Maxwell-Wagner-Sillar model showed the least AARE% of 0.87. The results showed promising results for efficient CO2 separation due to exceptional functionalized P-PNIPAM affinitive properties. Finally, cost analysis reflected the inflated cost of membranes production for industrial setup using indigenous resources.


Subject(s)
Carbon Dioxide , Environmental Restoration and Remediation , Cross-Sectional Studies , Excipients , Nitrogen , Polymers , Spectroscopy, Fourier Transform Infrared
3.
Environ Pollut ; 281: 116950, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33819670

ABSTRACT

Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Chlorine , Disinfectants/analysis , Disinfection , Drinking Water/analysis , Halogenation , Humans , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis
4.
J Adv Res ; 24: 475-483, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32566283

ABSTRACT

Green nanomaterials have gained much attention due to their potential use as therapeutic agents. The present study investigated the production of silver nanoparticles (AgNPs) from a silver-resistant Bacillus safensis TEN12 strain, which was isolated from metal contaminated soil and taxonomically identified through 16S rRNA gene sequencing. The formation of AgNPs in bacterial culture was confirmed by using UV-vis spectroscopy with an absorption peak at 426.18 nm. Fourier transform infrared (FTIR) spectroscopy confirmed the involvement of capping proteins and alcohols for stabilization of AgNPs. Moreover, X-ray diffraction analysis (XRD), scanning and transmission electron microscopy (SEM and TEM) confirmed the crystalline nature and spherical shape of AgNPs with particle size ranging from 22.77 to 45.98 nm. The energy dispersive X-ray spectroscopy (EDX) revealed that 93.54% silver content is present in the nano-powder. AgNPs showed maximum antibacterial activity (20.35 mm and 19.69 mm inhibition zones) at 20 µg mL-1 concentration against Staphylococcus aureus and Escherichia coli, respectively and significantly reduced the pathogen density in broth culture. Furthermore, AgNPs demonstrated significant anticancer effects in the human liver cancer cell line (HepG2) in MTT assay, whereas, no cytotoxic effects were demonstrated by AgNPs on normal cell line (HEK293). The present study suggests that the biogenic AgNPs may substitute chemically synthesized drugs with wider applications as antibacterial and anticancer agents.

SELECTION OF CITATIONS
SEARCH DETAIL