Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Dev Dis ; 10(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38132661

ABSTRACT

The genetic model system Drosophila has contributed fundamentally to our understanding of mammalian heart specification, development, and congenital heart disease. The relatively simple Drosophila heart is a linear muscular tube that is specified and develops in the embryo and persists throughout the life of the animal. It functions at all stages to circulate hemolymph within the open circulatory system of the body. During Drosophila metamorphosis, the cardiac tube is remodeled, and a new layer of muscle fibers spreads over the ventral surface of the heart to form the ventral longitudinal muscles. The formation of these fibers depends critically upon genes known to be necessary for mammalian second heart field (SHF) formation. Here, we review the prior contributions of the Drosophila system to the understanding of heart development and disease, discuss the importance of the SHF to mammalian heart development and disease, and then discuss how the ventral longitudinal adult cardiac muscles can serve as a novel model for understanding SHF development and disease.

2.
Dis Model Mech ; 16(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37691628

ABSTRACT

Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene NKX2.5 (also known as NKX2-5). We generated an R321N allele of the NKX2.5 ortholog tinman (tin) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila T-box cardiac factor named Dorsocross1. We generated a tinR321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We propose that the human K158N variant is pathogenic through causing a deficiency in DNA binding and a reduced ability to interact with a cardiac co-factor, and that cardiac defects might arise later in development or adult life.


Subject(s)
Drosophila Proteins , Heart Defects, Congenital , Animals , Humans , Drosophila , Genes, Homeobox , Heart , Heart Defects, Congenital/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Gene Expression Regulation, Developmental
3.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425758

ABSTRACT

Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene, Nkx2 . 5 . We generated an R321N allele of the Nkx2 . 5 ortholog tinman ( tin ) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila Tbox cardiac factor named Dorsocross1. We generated a tin R321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We conclude that the human K158N mutation is likely pathogenic through causing both a deficiency in DNA binding and a reduced ability to interact with a cardiac cofactor, and that cardiac defects might arise later in development or adult life.

SELECTION OF CITATIONS
SEARCH DETAIL
...