Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 107(7): 1193-202, 2011 May.
Article in English | MEDLINE | ID: mdl-21441245

ABSTRACT

BACKGROUND: During the life cycle of plants, both embryogenic and post-embryogenic growth are essentially based on cell division and cell expansion that are under the control of inherited developmental programmes modified by hormonal and environmental stimuli. Considering either stimulation or inhibition of plant growth, the key role of plant hormones in the modification of cell division activities or in the initiation of differentiation is well supported by experimental data. At the same time there is only limited insight into the molecular events that provide linkage between the regulation of cell-cycle progression and hormonal and developmental control. Studies indicate that there are several alternative ways by which hormonal signalling networks can influence cell division parameters and establish functional links between regulatory pathways of cell-cycle progression and genes and protein complexes involved in organ development. SCOPE: An overview is given here of key components in plant cell division control as acceptors of hormonal and developmental signals during organ formation and growth. Selected examples are presented to highlight the potential role of Ca(2+)-signalling, the complex actions of auxin and cytokinins, regulation by transcription factors and alteration of retinoblastoma-related proteins by phosphorylation. CONCLUSIONS: Auxins and abscisic acid can directly influence expression of cyclin, cyclin-dependent kinase (CDK) genes and activities of CDK complexes. D-type cyclins are primary targets for cytokinins and over-expression of CyclinD3;1 can enhance auxin responses in roots. A set of auxin-activated genes (AXR1-ARGOS-ANT) controls cell number and organ size through modification of CyclinD3;1 gene expression. The SHORT ROOT (SHR) and SCARECROW (SCR) transcriptional factors determine root patterning by activation of the CYCD6;1 gene. Over-expression of the EBP1 gene (plant homologue of the ErbB-3 epidermal growth factor receptor-binding protein) increased biomass by auxin-dependent activation of both D- and B-type cyclins. The direct involvement of auxin-binding protein (ABP1) in the entry into the cell cycle and the regulation of leaf size and morphology is based on the transcriptional control of D-cyclins and retinoblastoma-related protein (RBR) interacting with inhibitory E2FC transcriptional factor. The central role of RBRs in cell-cycle progression is well documented by a variety of experimental approaches. Their function is phosphorylation-dependent and both RBR and phospho-RBR proteins are present in interphase and mitotic phase cells. Immunolocalization studies showed the presence of phospho-RBR protein in spots of interphase nuclei or granules in mitotic prophase cells. The Ca(2+)-dependent phosphorylation events can be accomplished by the calcium-dependent, calmodulin-independent or calmodulin-like domain protein kinases (CDPKs/CPKs) phosphorylating the CDK inhibitor protein (KRP). Dephosphorylation of the phospho-RBR protein by PP2A phosphatase is regulated by a Ca(2+)-binding subunit.


Subject(s)
Calcium/metabolism , Cell Cycle , Plant Cells , Plant Development , Plant Growth Regulators/metabolism , Retinoblastoma Protein/metabolism , Signal Transduction , Phosphorylation
2.
J Biogeogr ; 37(11): 2111-2124, 2010 Nov.
Article in English | MEDLINE | ID: mdl-22473251

ABSTRACT

AIM: Our aims were to assess the phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs and to estimate divergence times using different geological scenarios. We related divergence times to past geological events and discuss the relevance of our data for the systematics of eastern Mediterranean water frogs. LOCATION: The eastern Mediterranean region. METHODS: Genetic diversity and divergence were calculated using sequences of two protein-coding mitochondrial (mt) genes: ND2 (1038 bp, 119 sequences) and ND3 (340 bp, 612 sequences). Divergence times were estimated in a Bayesian framework under four geological scenarios representing alternative possible geological histories for the eastern Mediterranean. We then compared the different scenarios using Bayes factors and additional geological data. RESULTS: Extensive genetic diversity in mtDNA divides eastern Mediterranean water frogs into six main haplogroups (MHG). Three MHGs were identified on the Anatolian mainland; the most widespread MHG with the highest diversity is distributed from western Anatolia to the northern shore of the Caspian Sea, including the type locality of Pelophylax ridibundus. The other two Anatolian MHGs are restricted to south-eastern Turkey, occupying localities west and east of the Amanos mountain range. One of the remaining three MHGs is restricted to Cyprus; a second to the Levant; the third was found in the distribution area of European lake frogs (P. ridibundus group), including the Balkans. MAIN CONCLUSIONS: Based on geological evidence and estimates of genetic divergence we hypothesize that the water frogs of Cyprus have been isolated from the Anatolian mainland populations since the end of the Messinian salinity crisis (MSC), i.e. since c. 5.5-5.3 Ma, while our divergence time estimates indicate that the isolation of Crete from the mainland populations (Peloponnese, Anatolia) most likely pre-dates the MSC. The observed rates of divergence imply a time window of c. 1.6-1.1 million years for diversification of the largest Anatolian MHG; divergence between the two other Anatolian MHGs may have begun about 3.0 Ma, apparently as a result of uplift of the Amanos Mountains. Our mtDNA data suggest that the Anatolian water frogs and frogs from Cyprus represent several undescribed species.

3.
Annu Rev Biochem ; 72: 783-812, 2003.
Article in English | MEDLINE | ID: mdl-14527327

ABSTRACT

Fueled by ever-growing DNA sequence information, proteomics-the large scale analysis of proteins-has become one of the most important disciplines for characterizing gene function, for building functional linkages between protein molecules, and for providing insight into the mechanisms of biological processes in a high-throughput mode. It is now possible to examine the expression of more than 1000 proteins using mass spectrometry technology coupled with various separation methods. High-throughput yeast two-hybrid approaches and analysis of protein complexes using affinity tag purification have yielded valuable protein-protein interaction maps. Large-scale protein tagging and subcellular localization projects have provided considerable information about protein function. Finally, recent developments in protein microarray technology provide a versatile tool to study protein-protein, protein-nucleic acid, protein-lipid, enzyme-substrate, and protein-drug interactions. Other types of microarrays, though not fully developed, also show great potential in diagnostics, protein profiling, and drug identification and validation. This review discusses high-throughput technologies for proteome analysis and their applications. Also discussed are the approaches used for the integrated analysis of the voluminous sets of data generated by proteome analysis conducted on a global scale.


Subject(s)
Proteome/metabolism , Proteomics/methods , Drug Design , Mass Spectrometry/methods , Protein Array Analysis/methods , Proteome/chemistry , Proteome/genetics , Two-Hybrid System Techniques , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...