Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046506

ABSTRACT

Iron plays vital roles in important biological processes in fish, but can be toxic in high concentrations. The information on metalloproteins that participate in maintenance of Fe homeostasis in an esocid fish, the northern pike, as an important freshwater bioindicator species, are rather scarce. The aim of this study was to identify main cytosolic constituents that sequester Fe in the northern pike liver. The method applied consisted of two-dimensional HPLC separation of Fe-binding biomolecules, based on anion-exchange followed by size-exclusion fractionation. Apparent molecular masses of two main Fe-metalloproteins isolated by this procedure were ~360 kDa and ~50 kDa, with the former having more acidic pI, and indicated presence of ferritin and hemoglobin, respectively. MALDI-TOF-MS provided confirmation of ferritin subunit with a m/z peak at 20.65 kDa, and hemoglobin with spectra containing main m/z peak at 16.1 kDa, and smaller peaks at 32.1, 48.2, and 7.95 kDa (single-charged Hb-monomer, dimer, and trimer, and double-charged monomer, respectively). LC-MS/MS with subsequent MASCOT database search confirmed the presence of Hb-ß subunits and pointed to close relation between esocid and salmonid fishes. Further efforts should be directed towards optimization of the conditions for metalloprotein analysis by mass spectrometry, to extend the knowledge on intracellular metal-handling mechanisms.

2.
Environ Sci Pollut Res Int ; 29(55): 82986-83003, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35761132

ABSTRACT

Bacteria from the genus Shewanella are inhabitants of marine and freshwater ecosystems, recognized fish spoilage bacteria, but less known as fish disease agents. Shewanella spp. isolated from fish living in waters close to effluents of a wastewater treatment plant (WWTP) were not previously characterized. We have tested Shewanella isolates from WWTP-affected waters and related fish. Genotypic characterization identified most strains as S. baltica and S. oneidensis. In order to investigate the sensibility and accuracy of their MALDI-TOF MS identification, they were grown on two culture media enriched by various NaCl concentrations, incubated at different temperatures and duration. We analyzed their antimicrobial susceptibility on a panel of antimicrobial drugs and capacity for biofilm production. With a view to demonstrate their capacity to produce fatty acids, we assessed the impact of different culture media on their lipid profile. We performed zebrafish embryotoxicity tests to simulate the environmental infection of the earliest life stages in S. baltica-contaminated waters. The best MALDI-TOF MS identification scores were for strains cultivated on TSA for 24 h at 22 °C and with supplementation of 1.5% NaCl. Less than 17% of isolates demonstrated antimicrobial resistance. Most isolates were weak biofilm producers. Strain-to-strain variation of MIC and MBC was low. The major fatty acids were C15:0, C16:0, C16:1, C17:1, and iC15:0. Exposure of Danio rerio to different S. baltica concentrations induced severe effects on zebrafish development: decreased heartbeat rate, locomotor activity, and melanin pigmentation. S. baltica passed through chorionic pores of zebrafish.


Subject(s)
Shewanella , Water Purification , Animals , Zebrafish , Ecosystem , Sodium Chloride , Culture Media , Fatty Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...