Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Genet Eng Biotechnol ; 22(1): 100357, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494271

ABSTRACT

BACKGROUND: Screening and developing novel antifungal agents with minimal environmental impact are needed to maintain and increase crop production, which is constantly threatened by various pathogens. Small peptides with antimicrobial and antifungal activities have been known to play an important role in plant defense both at the pathogen level by suppressing its growth and proliferation as well as at the host level through activation or priming of the plant's immune system for a faster, more robust response against fungi. Rust fungi (Pucciniales) are plant pathogens that can infect key crops and overcome resistance genes introduced in elite wheat cultivars. RESULTS: We performed an in vitro screening of 18 peptides predominantly of plant origin with antifungal or antimicrobial activity for their ability to inhibit leaf rust (Puccinia triticina, CCDS-96-14-1 isolate) urediniospore germination. Nine peptides demonstrated significant fungicidal properties compared to the control. Foliar application of the top three candidates, ß-purothionin, Purothionin-α2 and Defensin-2, decreased the severity of leaf rust infection in wheat (Triticum aestivum L.) seedlings. Additionally, increased pathogen resistance was paralleled by elevated expression of defense-related genes. CONCLUSIONS: Identified antifungal peptides could potentially be engineered in the wheat genome to provide an alternative source of genetic resistance to leaf rust.

2.
Theor Appl Genet ; 136(9): 198, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615732

ABSTRACT

KEY MESSAGE: Leaf rust resistance gene Lr2a was located to chromosome arm 2DS in three mapping populations, which will facilitate map-based cloning and marker-assisted selection of Lr2a in wheat breeding programs. Incorporating effective leaf rust resistance (Lr) genes into high-yielding wheat cultivars has been an efficient method of disease control. One of the most widely used genes in Canada is the multi-allelic resistance gene Lr2, with alleles Lr2a, Lr2b, Lr2c, and Lr2d. The Lr2a allele confers complete resistance to a large portion of the Puccinia triticina (Pt) population in Canada. In this study, Lr2a was genetically mapped in two doubled haploid populations developed from the crosses Superb/BW278 and Superb/86ISMN 2137, and an F2 population developed from the cross Chinese Spring/RL6016. Seedlings were tested with the Lr2a avirulent Pt races 74-2 MGBJ (Superb/BW278) and 12-3 MBDS (Superb/86ISMN 2137 and Chinese Spring/RL6016) in greenhouse assays and were genotyped with 90K wheat Infinium SNP and kompetitive allele-specific PCR (KASP) markers. Lr2a was mapped to a collinear position on chromosome arm 2DS in all three populations, within a 1.00 cM genetic interval between KASP markers kwm1620 and kwm1623. This corresponded to a 305 kb genomic region of chromosome 2D in Chinese Spring RefSeq v2.1. The KASP marker kwh740 was predictive of Lr2a in all mapping populations. A panel of 260 wheats were tested with three Pt isolates, which revealed that Lr2a is common in Canadian wheats. The KASP markers kwh740 and kwm1584 were highly associated with resistance at the Lr2 locus, while kwm1622 was slightly less correlated. Genetic mapping of the leaf rust resistance gene Lr2a and DNA markers developed here will facilitate its use in wheat breeding programs.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Canada , Chromosome Mapping
3.
Curr Genomics ; 24(4): 197-206, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38169773

ABSTRACT

Wheat, a crucial crop for the pursuit of food security, is faced with a plateauing yield projected to fall short of meeting the demands of the exponentially increasing human population. To raise global wheat productivity levels, strong efforts must be made to overcome the problems of (1) climate change-induced heat and drought stress and (2) the genotype-dependent amenability of wheat to tissue culture, which limits the success of recovering genetically engineered plants, especially in elite cultivars. Unfortunately, the mainstream approach of genetically engineering plant protein-coding genes may not be effective in solving these problems as it is difficult to map, annotate, functionally verify, and modulate all existing homeologs and paralogs within wheat's large, complex, allohexaploid genome. Additionally, the quantitative, multi-genic nature of most agronomically important traits furthers the complications faced by this approach. miRNAs are small, noncoding RNAs (sncRNAs) that repress gene expression at the post-transcriptional level, regulating various aspects of plant growth and development. They are gaining popularity as alternative targets of genetic engineering efforts for crop improvement due to their (1) highly conserved nature, which facilitates reasonable prediction of their gene targets and phenotypic effects under different expression levels, and (2) the capacity to target multiple genes simultaneously, making them suitable for enhancing complex and multigenic agronomic traits. In this mini-review, we will discuss the biogenesis, manipulation, and potential applications of plant miRNAs in improving wheat's yield, somatic embryogenesis, thermotolerance, and drought-tolerance in response to the problems of plateauing yield, genotype-dependent amenability to tissue culture, and susceptibility to climate change-induced heat and drought stress.  © His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food, 2023.

4.
Front Genome Ed ; 5: 1265103, 2023.
Article in English | MEDLINE | ID: mdl-38192430

ABSTRACT

Improvement in agronomic traits in crops through gene editing (GE) relies on efficient transformation protocols for delivering the CRISPR/Cas9-coded transgenes. Recently, a few embryogenesis-related genes have been described, the co-delivery of which significantly increases the transformation efficiency with reduced genotype-dependency. Here, we characterized the transgenic and GE events in wheat (cv. Fielder) when transformed with GROWTH-REGULATING FACTOR 4 (GRF4) and its cofactor GRF-INTERACTING FACTOR 1 (GIF1) chimeric gene. Transformation efficiency in our experiments ranged from 22% to 68%, and the editing events were faithfully propagated into the following generation. Both low- and high-copy-number integration events were recovered in the T0 population with various levels of integrity of the left and right T-DNA borders. We also generated a population of wheat plants with 10 different gRNAs targeting 30 loci in the genome. A comparison of the epigenetic profiles at the target sites and editing efficiency revealed a significant positive correlation between chromatin accessibility and mutagenesis rate. Overall, the preliminary screening of transgene quality and GE events in the T0 population of plants regenerated through the co-delivery of GRF-GIF can allow for the propagation of the best candidates for further phenotypic analysis.

5.
Methods Mol Biol ; 2383: 595-616, 2022.
Article in English | MEDLINE | ID: mdl-34766317

ABSTRACT

Cell penetrating peptides (CPPs) are short peptides that are able to translocate themselves and their cargo into cells. The progressive and continuous application of CPPs in various fields of basic and applied research shows that they are efficient delivery vectors for an assortment of biomolecules, including nucleic acids and proteins. This feature makes CPPs an excellent tool for modification of plant genomes through transgenesis and genome editing. In this review, we present the progress during the last three decades in application of CPPs for delivery of DNA, RNA, and proteins into plant cells and tissues. Moreover, we highlight the exploiting of CPPs as advantageous and beneficial tool for plant genome editing via delivery of nuclease proteins, and provide a practical example of genome alternation through CPP-delivered nucleases. Finally, the current exploitation of peptides in organelle-specific DNA delivery and modification of organellar genomes is discussed.


Subject(s)
Gene Editing , Cell-Penetrating Peptides/genetics , DNA , Endonucleases , Gene Transfer Techniques , Nucleic Acids , Plants/genetics , Proteins
6.
Genes (Basel) ; 12(9)2021 09 13.
Article in English | MEDLINE | ID: mdl-34573392

ABSTRACT

Emerging threats of climate change require the rapid development of improved varieties with a higher tolerance to abiotic and biotic factors. Despite the success of traditional agricultural practices, novel techniques for precise manipulation of the crop's genome are needed. Doubled haploid (DH) methods have been used for decades in major crops to fix desired alleles in elite backgrounds in a short time. DH plants are also widely used for mapping of the quantitative trait loci (QTLs), marker-assisted selection (MAS), genomic selection (GS), and hybrid production. Recent discoveries of genes responsible for haploid induction (HI) allowed engineering this trait through gene editing (GE) in non-inducer varieties of different crops. Direct editing of gametes or haploid embryos increases GE efficiency by generating null homozygous plants following chromosome doubling. Increased understanding of the underlying genetic mechanisms responsible for spontaneous chromosome doubling in haploid plants may allow transferring this trait to different elite varieties. Overall, further improvement in the efficiency of the DH technology combined with the optimized GE could accelerate breeding efforts of the major crops.


Subject(s)
Crops, Agricultural/genetics , Gene Editing/trends , Haploidy , Plant Breeding/methods , CRISPR-Cas Systems/genetics , Gene Editing/methods , Phenotype , Plants, Genetically Modified , Zea mays/genetics
7.
Genome ; 64(4): 490-501, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33186070

ABSTRACT

Despite being a controversial crop, Cannabis sativa L. has a long history of cultivation throughout the world. Following recent legalization in Canada, Cannabis is emerging as an important plant for both medicinal and recreational purposes. Recent progress in genome sequencing of both cannabis and hemp varieties allow for systematic analysis of genes coding for enzymes involved in the cannabinoid biosynthesis pathway. Single-nucleotide polymorphisms in the coding regions of cannabinoid synthases play an important role in determining plant chemotype. Deep understanding of how these variants affect enzyme activity and accumulation of cannabinoids will allow breeding of novel cultivars with desirable cannabinoid profiles. Here we present a short overview of the major cannabinoid synthases and present the data on the analysis of their genetic variants and their effect on cannabinoid content using several in-house sequenced Cannabis cultivars.


Subject(s)
Cannabinoids/biosynthesis , Cannabinoids/genetics , Cannabis/genetics , Cannabis/metabolism , Genetic Variation , Biosynthetic Pathways/genetics , Canada , Cannabis/classification , Cannabis/embryology , Genomics , Plant Breeding , Promoter Regions, Genetic
8.
Plants (Basel) ; 9(5)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456251

ABSTRACT

Pollen viability and storage is of great interest to cannabis breeders and researchers to maintain desirable germplasm for future use in breeding or for biotechnological and gene editing applications. Here, we report a simple and efficient cryopreservation method for long-term storage of Cannabis sativa pollen. Additionally, the bicellular nature of cannabis pollen was identified using DAPI (4',6-diamidino-2-phenylindole) staining. A pollen germination assay was developed to assess cannabis pollen viability and used to demonstrate that pollen collected from different principal growth stages exhibited differential longevity. Finally, a simple and efficient method that employs pollen combined with baked whole wheat flour and subsequent desiccation under vacuum was developed for the long-term cryopreservation of C. sativa pollen. Using this method, pollen viability was maintained in liquid nitrogen after four months, suggesting long-term preservation of cannabis pollen.

9.
Methods Mol Biol ; 2072: 165-181, 2020.
Article in English | MEDLINE | ID: mdl-31541446

ABSTRACT

Recent advances in genome engineering are revolutionizing crop research and plant breeding. The ability to make specific modifications to a plant's genetic material creates opportunities for rapid development of elite cultivars with desired traits. The plant genome can be altered in several ways, including targeted introduction of nucleotide changes, deleting DNA segments, introducing exogenous DNA fragments and epigenetic modifications. Targeted changes are mediated by sequence specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspersed short palindromic repeats)-Cas (CRISPR associated protein) systems. Recent advances in engineering chimeric Cas nucleases fused to base editing enzymes permit for even greater precision in base editing and control over gene expression. In addition to gene editing technologies, improvement in delivery systems of exogenous DNA into plant cells have increased the rate of successful gene editing events. Regeneration of fertile plants containing the desired edits remains challenging; however, manipulation of embryogenesis-related genes such as BABY BOOM (BBM) has been shown to facilitate regeneration through tissue culture, often a major hurdle in recalcitrant cultivars. Epigenome reprogramming for improved crop performance is another possibility for future breeders, with recent studies on MutS HOMOLOG 1 (MSH1) demonstrating epigenetic-dependent hybrid vigor in several crops. While these technologies offer plant breeders new tools in creating high yielding, better adapted crop varieties, constantly evolving government policy regarding the cultivation of plants containing transgenes may impede the widespread adoption of some of these techniques. This chapter summarizes advances in genome editing tools and discusses the future of these techniques for crop improvement.


Subject(s)
Crops, Agricultural/genetics , Genetic Engineering , Genome, Plant , Genomics , Plant Breeding , CRISPR-Cas Systems , Epigenomics/methods , Gene Editing , Gene Expression Regulation, Plant , Genetic Engineering/methods , Genomics/methods , Plant Breeding/methods , Plant Development/genetics , Plants, Genetically Modified , Quantitative Trait, Heritable , Transcription Activator-Like Effector Nucleases
10.
Plant Biotechnol J ; 18(5): 1307-1316, 2020 05.
Article in English | MEDLINE | ID: mdl-31729822

ABSTRACT

Recent advances in genome engineering technologies based on designed endonucleases (DE) allow specific and predictable alterations in plant genomes to generate value-added traits in crops of choice. The EXZACT Precision technology, based on zinc finger nucleases (ZFN), has been successfully used in the past for introduction of precise mutations and transgenes to generate novel and desired phenotypes in several crop species. Current methods for delivering ZFNs into plant cells are based on traditional genetic transformation methods that result in stable integration of the nuclease in the genome. Here, we describe for the first time, an alternative ZFN delivery method where plant cells are transfected with ZFN protein that eliminates the need for stable nuclease genomic integration and allows generation of edited, but not transgenic cells or tissues. For this study, we designed ZFNs targeting the wheat IPK1 locus, purified active ZFN protein from bacterial cultures, complexed with cell-penetrating peptides (CPP) and directly transfected the complex into either wheat microspores or embryos. NGS analysis of ZFN-treated material showed targeted edits at the IPK1 locus in independent experiments. This is the first description of plant microspore genome editing by a ZFN when delivered as a protein complexed with CPP.


Subject(s)
Cell-Penetrating Peptides , Gene Editing , Endonucleases/metabolism , Haploidy , Triticum/genetics , Triticum/metabolism , Zinc Finger Nucleases , Zinc Fingers
11.
Plant Genome ; 12(1)2019 03.
Article in English | MEDLINE | ID: mdl-30951085

ABSTRACT

Epigenetic regulations in the form of changes in differential expression of noncoding RNAs (ncRNAs) are an essential mechanism of stress response in plants. Previously we showed that heat treatment in L. results in the differential processing and accumulation of ncRNA fragments (ncRFs) stemming from transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs). In this work, we analyzed whether ncRFs are differentially expressed in the progeny of heat-stressed plants. We found significant changes in the size of tRF reads and a significant decrease in the percentage of tRFs mapping to tRNA-Ala, tRNA-Arg, and tRNA-Tyr and an increase in tRFs mapping to tRNA-Asp. The enrichment analysis showed significant differences in processing of tRFs from tRNA, tRNA, tRNA, tRNA, tRNA, and tRNA isoacceptors. Analysis of potential targets of tRFs showed that they regulate brassinosteroid metabolism, the proton pump ATPase activity, the antiporter activity, the mRNA decay activity as well as nucleosome positioning and the epigenetic regulation of transgenerational response. Gene ontology term analysis of potential targets demonstrated a significant enrichment in tRFs that potentially targeted a cellular component endoplasmic reticulum (ER) and in small nucleolar RNA fragments (snoRFs), the molecular function protein binding. To summarize, our work demonstrated that the progeny of heat-stressed plants exhibit changes in the expression of tRFs and snoRFs but not of small nuclear RNA fragments (snRFs) or ribosomal RNA fragments (rRFs) and these changes likely better prepare the progeny of stressed plants to future stress encounters.


Subject(s)
Brassica rapa/genetics , Heat-Shock Response/genetics , RNA, Plant/biosynthesis , RNA, Untranslated/biosynthesis , Brassica rapa/physiology , Gene Ontology , Genes, Plant , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Untranslated/genetics , Reproduction
12.
Noncoding RNA ; 3(2)2017 Mar 24.
Article in English | MEDLINE | ID: mdl-29657288

ABSTRACT

Recently, a novel type of non-coding RNA (ncRNA), known as ncRNA fragments or ncRFs, has been characterised in various organisms, including plants. The biogenesis mechanism, function and abundance of ncRFs stemming from various ncRNAs are poorly understood, especially in plants. In this work, we have computationally analysed the composition of ncRNAs and the fragments that derive from them in various tissues of Brassica rapa plants, including leaves, meristem tissue, pollen, unfertilized and fertilized ova, embryo and endosperm. Detailed analysis of transfer RNA (tRNA) fragments (tRFs), ribosomal RNA (rRNA) fragments (rRFs), small nucleolar RNA (snoRNA) fragments (snoRFs) and small nuclear RNA (snRNA) fragments (snRFs) showed a predominance of tRFs, with the 26 nucleotides (nt) fraction being the largest. Mapping ncRF reads to full-length mature ncRNAs showed a strong bias for one or both termini. tRFs mapped predominantly to the 5' end, whereas snRFs mapped to the 3' end, suggesting that there may be specific biogenesis and retention mechanisms. In the case of tRFs, specific isoacceptors were enriched, including tRNAGly(UCC) and tRFAsp(GUC). The analysis showed that the processing of 26-nt tRF5' occurred by cleavage at the last unpaired nucleotide of the loop between the D arm and the anticodon arm. Further support for the functionality of ncRFs comes from the analysis of binding between ncRFs and their potential targets. A higher average percentage of binding at the first half of fragments was observed, with the highest percentage being at 2-6 nt. To summarise, our analysis showed that ncRFs in B. rapa are abundantly produced in a tissue-specific manner, with bias toward a terminus, the bias toward the size of generated fragments and the bias toward the targeting of specific biological processes.

13.
Methods Mol Biol ; 1456: 63-71, 2017.
Article in English | MEDLINE | ID: mdl-27770357

ABSTRACT

DNA methylation is a heritable but reversible epigenetic mechanism of control over gene expression. The level of DNA methylation of specific genomic regions correlates with chromatin condensation, the level of gene expression, and in some cases genome stability and the frequency of homologous recombination. Here, we describe the combined bisulfite restriction analysis (COBRA) assay that allows analyzing the methylation status at a specific locus. The protocol consists of the following major steps: bisulfite conversion of non-methylated cytosines to uracils, the locus-specific PCR amplification of converted DNA, restriction digestion, the analysis of restriction patterns on the gel, and the quantification of these restriction patterns using ImageJ or a similar program.


Subject(s)
DNA Methylation , Epigenomics , Genetic Loci , Restriction Mapping/methods , Sequence Analysis, DNA , Sulfites , Epigenomics/methods , Polymerase Chain Reaction , Sequence Analysis, DNA/methods
14.
Methods Mol Biol ; 1456: 73-79, 2017.
Article in English | MEDLINE | ID: mdl-27770358

ABSTRACT

DNA methylation is a reversible covalent chemical modification of DNA intended to regulate chromatin structure and gene expression in a cell- and tissue-specific manner and in response to the environment. Cytosine methylation is predominantly occurring in plants, and cytosine nucleotides in plants can be methylated at symmetrical (CpG and CpHpG) and nonsymmetrical sites. Although there exists a number of various methods for the detection of cytosine methylation, most of them are either laborious or expensive or both. Here, we describe a quick inexpensive method for the analysis of global genome methylation using a cytosine-extension assay. The assay can be used for the analysis of the total level of CpG, CpHpG, and CpHpH methylation in a given sample of plant DNA.


Subject(s)
Cytosine/metabolism , DNA Methylation , Epigenomics/methods , Genome , CpG Islands , DNA Restriction Enzymes/metabolism
15.
Methods Mol Biol ; 1456: 189-196, 2017.
Article in English | MEDLINE | ID: mdl-27770367

ABSTRACT

The discovery of small RNAs in plants and animals almost two decades ago attracted a significant interest towards epigenetic regulation of gene expression and the practical implementation of the gained knowledge in applied studies. New and sometimes unexpected functions have been ascribed to sRNAs almost every couple of years since their discovery, hence indicating that the complete role of sRNAs in plant and animal physiology is still barely understood. Next-generation sequencing technologies allow to generate high-resolution profiles of sRNAs for the consequent analysis and possibly to discover novel functions of sRNAs. In this chapter, we provide brief guidelines for sRNA library preparation in plants and a practical approach that can be implemented to overcome possible difficulties with sequencing library generation.


Subject(s)
Gene Library , High-Throughput Nucleotide Sequencing , RNA, Plant , RNA, Small Untranslated/genetics , Plants/genetics , Sequence Analysis, RNA
16.
Methods Mol Biol ; 1456: 197-224, 2017.
Article in English | MEDLINE | ID: mdl-27770368

ABSTRACT

Next-generation sequencing became a method of choice for the investigation of small RNA transcriptomes in plants and animals. Although a technical side of sequencing itself is becoming routine, and experimental costs are affordable, data analysis still remains a challenge, especially for researchers with limited computational experience. Here, we present a detailed description of a computational workflow designed to take raw sequencing reads as input, to obtain small RNA predictions, and to detect the differentially expressed microRNAs as a result. The exact commands and pieces of code are provided and hopefully can be adapted and used by other researchers to facilitate the study of small RNA regulation.


Subject(s)
Computational Biology/methods , Gene Expression Profiling , RNA, Small Untranslated/genetics , Transcriptome , Brassica/genetics , Gene Library , Genomics/methods , MicroRNAs/genetics , Quality Control , RNA, Small Interfering/genetics , Sequence Analysis, RNA , Software , Web Browser , Workflow
17.
Methods Mol Biol ; 1456: 225-236, 2017.
Article in English | MEDLINE | ID: mdl-27770369

ABSTRACT

Virus-induced gene silencing (VIGS) is a powerful epigenetic tool that allows in a relatively short period of time to down-regulate the expression of an endogenous gene in infected plants for either monitoring the resulting phenotype or enhancing/modifying a particular trait associated with the gene. Here, we describe the utilization of Tobacco rattle virus (TRV) as a vector for the VIGS technique in Arabidopsis plants. The unique ability of TRV to infect both somatic tissues and gametes allows deciphering the role of genes in these tissues simultaneously. As an example, we demonstrate the utilization of TRV to down-regulate the expression of AGO2 and NRPD1a genes in ovules of Arabidopsis plants in order to boost the stable transformation efficiency by floral dip.


Subject(s)
Arabidopsis/genetics , Arabidopsis/virology , Gene Expression Regulation, Plant , Gene Silencing , Host-Pathogen Interactions/genetics , RNA Interference , Transformation, Genetic , Genetic Vectors/genetics , Plasmids
18.
Methods Mol Biol ; 1456: 237-242, 2017.
Article in English | MEDLINE | ID: mdl-27770370

ABSTRACT

DNA strand breaks arise from normal cellular processes such as replication, transcription, and DNA repair as well as spontaneous DNA damage caused by cell metabolic activities. In addition, strand breaks occur due to direct or indirect DNA damage produced by various abiotic and biotic stresses. Strand breaks are among the most problematic DNA lesions because unrepaired strand breaks may lead to cell cycle arrest, gross chromosome rearrangements, or even cell death. Thus, the measurement of the relative number of strand breaks can provide an informative picture of genome stability of a given cell, tissue, or organism. Here, we describe the use of random oligonucleotide-primed synthesis (ROPS) assay for the detection and quantification of the level of strand breaks in tissue samples. The applications of the assay for a quantitative detection of 3'OH, 3'P, or DNA strand breaks at a cleavage site of the deoxyribose residue are discussed.


Subject(s)
DNA Breaks , DNA Repair , DNA Replication , Oligonucleotides , Genomic Instability
19.
J Exp Bot ; 67(7): 2081-92, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26944635

ABSTRACT

A growing number of reports indicate that plants possess the ability to maintain a memory of stress exposure throughout their ontogenesis and even transmit it faithfully to the following generation. Some of the features of transgenerational memory include elevated genome instability, a higher tolerance to stress experienced by parents, and a cross-tolerance. Although the underlying molecular mechanisms of this phenomenon are not clear, a likely contributing factor is the absence of full-scale reprogramming of the epigenetic landscape during gametogenesis; therefore, epigenetic marks can occasionally escape the reprogramming process and can be passed on to the progeny. To date, it is not entirely clear which part of the epigenetic landscape is more likely to escape the reprogramming events, and whether such a process is random or directed and sequence specific. The identification of specific epigenetic marks associated with specific stressors would allow generation of stress-tolerant plants through the recently discovered techniques for precision epigenome engineering. The engineered DNA-binding domains (e.g. ZF, TALE, and dCas9) fused to particular chromatin modifiers would make it possible to target epigenetic modifications to the selected loci, probably allowing stress tolerance to be achieved in the progeny. This approach, termed epigenetic breeding, along with other methods has great potential to be used for both the assessment of the propagation of epigenetic marks across generations and trait improvement in plants. In this communication, we provide a short overview of recent reports demonstrating a transgenerational response to stress in plants, and discuss the underlying potential molecular mechanisms of this phenomenon and its use for plant biotechnology applications.


Subject(s)
Plant Physiological Phenomena/genetics , Plants/genetics , Stress, Physiological/genetics , Breeding , Epigenesis, Genetic , Inheritance Patterns
20.
Plant Signal Behav ; 11(7): e1151599, 2016 07 02.
Article in English | MEDLINE | ID: mdl-26901311

ABSTRACT

Small interfering RNAs (siRNAs) are involved in the regulation of plant development and response to stress. We have previously shown that mutants impaired in Dicer-like 2 (DCL2), DCL3 and DCL4, RDR2, RDR6 and NPRD1 are partially impaired in their response to stress and dcl2 and dcl3 plants are also impaired in transgenerational response to stress, including changes in homologous recombination frequency (HRF). Here, we have analyzed genome stability of dcl2, dcl3, dcl4, dcl2 dcl3, dcl2 dcl3 dcl4 and rdr6 mutants by measuring the non-induced and the stress-induced recombination frequency. We found that all mutants had the lower spontaneous HRF. The analysis of strand breaks showed that all tested Arabidopsis mutants had a higher level of spontaneous strand breaks, suggesting that the lower HRF is not due to the unusually low level of breaks. Exposure to methyl methane sulfonate (MMS) resulted in an increase in the level of strand breaks in wild-type plants and a decrease in mutants. All mutants had the higher methylation of cytosines at CpG sites under non-induced conditions. Exposure to MMS resulted in a decrease in methylation level in wild-type plants and an increase in methylation in all dcl mutants. The expression of several DNA repair genes was altered in dcl4 plants under non-induced and induced conditions. Our data suggest that siRNA biogenesis may be essential for the maintenance of the genome stability and stress response in Arabidopsis.


Subject(s)
Arabidopsis/genetics , RNA, Small Interfering/genetics , Arabidopsis Proteins/genetics , CpG Islands/genetics , DNA Methylation/genetics , Genomic Instability/genetics , Homologous Recombination/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...