Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Water Sci Technol ; 89(7): 1879-1890, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619909

ABSTRACT

This study investigated the treatment of wastewater from tomato paste (TP) production using electrocoagulation (EC) and electrooxidation (EO). The effectiveness of water recovery from the pretreated water was then investigated using the membrane process. For this purpose, the effects of independent control variables, including electrode type (aluminum, iron, graphite, and stainless steel), current density (25-75 A/m2), and electrolysis time (15-120 min) on chemical oxygen demand (COD) and color removal were investigated. The results showed that 81.0% of COD and 100% of the color removal were achieved by EC at a current density of 75 A/m2, a pH of 6.84 and a reaction time of 120 min aluminum electrodes. In comparison, EO with graphite electrodes achieved 55.6% of COD and 100% of the color removal under similar conditions. The operating cost was calculated to be in the range of $0.56-30.62/m3. Overall, the results indicate that EO with graphite electrodes is a promising pretreatment process for the removal of various organics. In the membrane process, NP030, NP010, and NF90 membranes were used at a volume of 250 mL and 5 bar. A significant COD removal rate of 94% was achieved with the membrane. The combination of EC and the membrane process demonstrated the feasibility of water recovery from TP wastewater.


Subject(s)
Graphite , Solanum lycopersicum , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid/methods , Aluminum , Electrocoagulation/methods , Water , Electrodes , Industrial Waste/analysis
2.
Chemosphere ; 339: 139558, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37467863

ABSTRACT

Today, where water resources are polluted rapidly, the need for eco-friendly green methods is gradually increasing. Conversion of waste biomass into functional adsorbents that can be utilized in water treatment is a win-win practice for both recycling and water pollution treatment. In this study, the adsorbent material was obtained from the palm leaf to contribute to sustainable green energy. This cellulose-containing adsorbent material was tested in the removal of Methylene Blue (MB) and Basic Red-18 (BR18). The properties of palm leaf adsorbent were determined. The best removal efficiencies and optimum conditions were determined in the adsorption process. In both dye types; the original pH value, 2 g/L adsorbent dose, 25 mg/L dye concentration, and 120 min were chosen as the optimum conditions since the best removal efficiency was obtained in the experiments performed at 25 °C. At these conditions, the removal efficiencies were found to be 100% and 90% for BR18 and MB, respectively. In addition, adsorption kinetics, isotherms, and thermodynamic data were analyzed. For BR18 and MB, it was found to fit the Langmuir isotherm and pseudo-2nd order. Palm leaf adsorbent was used with an efficiency of over 50% in four consecutive cycles.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Hydrochloric Acid , Adsorption , Biomass , Water Pollutants, Chemical/chemistry , Thermodynamics , Methylene Blue/chemistry , Kinetics , Cations , Hydrogen-Ion Concentration
3.
Chemosphere ; 304: 135210, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35679982

ABSTRACT

One of the most important problems affecting the environment today is the inability to adequately treat wastewater containing dyes. Among of the many treatment processes used in the treatment of dye-containing wastewater, photocatalytic based wastewater treatment processes attract the attention of scientists as a new, economically feasible, and promising approach which has been in practice for a few decades. However, in order to use these processes in wider areas, cheap and effective catalysts are still being developed today. In this study, the photocatalytic activity of eggshell-CaO produced from waste chicken eggshells was investigated for decolorization of Safranin (Basic Red 2) and Reactive Red 180 (RR180) dyes. First, sintering process was applied to the waste chicken eggshells at different temperatures (300, 600, 900 °C) in order to observe CaO formation from the eggshells. Second, the parameters such as photocatalyst amount, pH, concentration of dyes, and reaction time were optimized on dye removal efficiency in photocatalytic experiments. The optimum conditions were performed under visible light and found to be 1 g/L of catalyst amount (sintered at 900 °C), original solution pH (6.80 for Safranin and 6.60 for RR180), and 5 mg/L of dye concentration. The photocatalytic removal efficiencies of Safranin and RR180 dyes were 100% and 97.90%, respectively, under the determined optimum experimental conditions. The adsorption efficiency of the dyes that could be realized during the photocatalytic experiment was measured as 20.99% and 9.99% for Safranin and RR180 dyes, respectively.


Subject(s)
Egg Shell , Wastewater , Animals , Chickens , Coloring Agents , Phenazines
4.
Water Environ Res ; 94(5): e10719, 2022 May.
Article in English | MEDLINE | ID: mdl-35502751

ABSTRACT

This paper aims to investigate the uses of leonardite powder (LP) as an effective adsorbent for the removal of basic red 18 (BR18) and reactive red 180 (RR180) dyes. LP was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Zeta potential, Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF). The adsorption process was assessed based on pH, size and the amount of the adsorbent, BR18 and RR180 concentration, and the contact time. BR18 dye was completely adsorbed onto the LP (the removal efficiency equals 100%) after 45 min at the optimum condition (original pH [6.5], the particle size of 45 µm, the adsorbent dose of 0.25 g/L, and the initial concentration of 10 mg/L). For RR180, the maximum removal efficiency (74%) was obtained when 1 g/L LP with 45 um size was added to an RR180 solution of 10 mg/L concentration. Temkin isotherm was used to explain the adsorption of BR18. In contrast, RR180 adsorption was described by the Freundlich model. The adsorptions of both dyes followed the pseudo-second-order kinetics. The reusability of the LP was assessed. For BR18, the efficiency decreased to 96% in the second cycle and reached 42% in the fifth cycle. In RR180, LP was not able to be reused efficiently. As a result, the LP ability for BR18 removal is higher than the RR180 in terms of uptake and reusability. PRACTITIONER POINTS: BR18 and RR180 dyes elimination was carried out with leonardite powder (LP). The maximum removal efficiencies for BR18 and RR180 were 100% and 74%, respectively. The LP ability for BR18 removal is higher than the RR180 in terms of uptake and reusability.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Adsorption , Minerals , Powders , Water Pollutants, Chemical/chemistry
5.
Chemosphere ; 300: 134492, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398064

ABSTRACT

It is very important to treat Cr(VI) from the aquatic environment due to its toxic and harmful effects. Conventional treatment methodology involving biological pathways is generally ineffective for wastewater containing Cr(VI). Therefore, it is necessary to develop environmentally friendly and economical methods to remove Cr(VI) from the aquatic environment. In this study, leonardite, which is a natural mineral that has no harmful effects on the environment, was used for Cr(VI) removal. Leonardite was used in both adsorption and photocatalytic treatment systems by only pulverizing without any chemical treatment. Characterizations of leonardite were obtained using X-ray fluorescence (XRF), fouirer transform infrared spektrofotometre (FTIR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) analyses methods. The effects of solution pH (2-10), particle size (45-300 µm), adsorbent dose (0.25-3 g/L), and initial concentration (10-30 mg/L) on Cr(VI) removal efficiency were investigated in both adsorption and photocatalytic experiments. In the adsorption process, a complete removal efficiency (100%) was obtained for 3 g/L of adsorbent dose with an initial Cr(VI) concentration of 10 mg/L at pH 2 for 2 h. In the photocatalytic process, 100% removal efficiency of Cr(VI) was obtained when four times less adsorbent dosage was used under the same conditions. In addition, the reuse of leonardite powder was also investigated under optimum experimental conditions. Leonardite powder preserved approximately 70% of its activity in the photocatalytic process while it lost 50% of its activity after 5 reuses in adsorption process.


Subject(s)
Water Pollutants, Chemical , Adsorption , Chromium/analysis , Hydrogen-Ion Concentration , Kinetics , Minerals , Powders , Water Pollutants, Chemical/analysis
6.
Water Environ Res ; 94(2): e10692, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35187750

ABSTRACT

The present work aims to study chemical oxygen demand (COD), oil-grease, and color removal from vegetable oil wastewater by combined electrocoagulation and activated sludge processes. For this purpose, the sample was pretreated using electrocoagulation by various optimization parameters such as electrode type (Al-Al and Fe-Fe), current density (100-400 A/m2 ), pH (2-8), and electrolysis time (15-180 min). The results showed that 89.3% of COD, 100% of oil-grease, and 66.2% of color were removed by electrocoagulation under the conditions of 300-A/m2 current density, pH 2, and 180-min reaction time with Al-Al electrode pairs. Then, the effluent of electrocoagulation was treated by an activated sludge process. The results depicted that the activated sludge process was also effective for vegetable oil wastewater treatment and it enhanced 98.9% COD and 79.2% color removal efficiency. The effluent of the combined process was very clear, and its quality exceeded the direct discharge standard of the water pollution control regulation. The laboratory-scale test results indicate that the combined electrocoagulation and activated sludge process is feasible for the treatment of vegetable oil wastewater. PRACTITIONER POINTS: Vegetable oil wastewater was treated by combination of electrocoagulation and activated sludge processes. The combined electrocoagulation and activated sludge processes supplied 99.9% COD, 100% oil-grease, and 93.0% color removal efficiency. The laboratory-scale test results indicate that the combined EC-SBR processes were feasible for the treatment of vegetable oil wastewater.


Subject(s)
Sewage , Wastewater , Electrocoagulation/methods , Electrodes , Industrial Waste/analysis , Plant Oils , Waste Disposal, Fluid/methods
7.
Water Sci Technol ; 85(1): 77-89, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35050867

ABSTRACT

Wastewater from the textile industry containing a high concentration of organic and inorganic chemicals has strong color and residual chemical oxygen demand (COD). Therefore, advanced oxidation processes (AOPs) are very good candidates to treat textile industry wastewater. In this study, we investigated the effect of different types of AOPs supported with hydrogen peroxide (H2O2) for the treatment of viscose fibers dyeing wastewater. Fenton, photo-Fenton, and Fenton-supported subcritical water oxidation (FSWO) processes were chosen as AOPs to compare the treatment efficiency of viscose fibers dyeing wastewater. The effects of solution pH, Fe2+ concentration, and H2O2 concentration on the treatment of viscose fibers dyeing wastewater were tested. The maximum color and COD removal efficiency was obtained corresponding to pH 2.5 for all oxidation methods when methylene blue (MB) dye solution was used. However, the maximum efficiencies were obtained at pH 3.0 for real textile wastewater decolorization. The MB dye removal efficiency was increased to 97.22, 100, and 100% for Fenton, photo-Fenton, and FSWO processes, respectively, when the addition of H2O2 concentration was adjusted to 125 mg/L. However, the maximum color removal efficiencies of viscose fibers dyeing wastewater were obtained 56.94, 61.26, 64.11% for Fenton, photo-Fenton, FSWO processes, respectively. As a result, the FSWO showed maximum color removal efficiencies.


Subject(s)
Hydrogen Peroxide , Wastewater , Coloring Agents , Iron , Methylene Blue , Waste Disposal, Fluid
8.
Water Environ Res ; 94(1): e1681, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35075710

ABSTRACT

This study intended to evaluate and compare the efficiency of electrochemical oxidation (EO), nanofiltration (NF), and reverse osmosis (RO) membranes processes in the treatment of yarn fabric dyeing wastewater (YFDW) in terms of chemical oxygen demand (COD) removal, color removal, salinity reduction, and conductivity removal. EO tests of the textile effluent were conducted under various current densities and solution pH conditions employing a graphite electrode. Membrane filtration experiments were conducted using two different NF membranes: NP010 and NP030 and two distinct RO membranes: BW30 and SW30 flat-sheet membranes. The experimental results showed that NF membrane process is not suitable for yarn fabric wastewater treatment showing low removal efficiencies for COD, color, and conductivity. However, both EO and RO membranes could reduce COD and color to high removal performances. EO results showed more than 99% of color removal and 80% of COD elimination at pH = 6 and current density of 50 mA/cm2 after 180 min of reaction. Using RO membrane for yarn fabric wastewater treatment demonstrated relatively complete removal of color concentration and 98% of COD elimination. However, EO process showed less performance in conductivity removal efficiency compared to the RO membranes. EO treatment of YFDW decreased conductivity by 31.2%, whereas RO membrane process reduced conductivity to a greater extent and recorded 97.1% of removal elimination percentage. Therefore, the treated water by RO membrane could be recycled back to the process such as washing and dyeing, in that way offering economic profits by decreasing water consumption and wastewater treatment cost. PRACTITIONER POINTS: Electrochemical oxidation and membrane filtration processes were combined for the treatment of yarn fabric dyeing wastewater (YFDW). A 100% color removal of color and 98.5% COD elimination efficiencies were obtained for the electrochemical oxidation (EO) + RO combined process. EO treatment of YFDW decreased conductivity by 32.7%, whereas the RO membrane process reduced conductivity to a greater extent and recorded 97.7% of removal elimination percentage.


Subject(s)
Wastewater , Water Purification , Coloring Agents , Membranes, Artificial , Osmosis , Textiles , Waste Disposal, Fluid , Water
9.
Water Environ Res ; 93(11): 2780-2794, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34453770

ABSTRACT

This study concerns the preparation of novel adsorbent prepared from calcium alginate bead modified with polyethyleneimine (PEI-CaAlg). The adsorption capacity of the PEI-CaAlg was examined by Remazol Brilliant Blue R (RBBR) and phosphate adsorption. PEI-CaAlg showed high removal efficiencies for RBBR (90.48%) and phosphate (88.10%). The removal of both RBBR and phosphate onto the PEI-CaAlg followed the Freundlich isotherm and the second-order model. The adsorption was studied in terms of thermodynamic and found to be feasible and spontaneous in nature. The reusability of the modified alginate beads was also examined up to five cycles. The removal efficiency was 90.48% at the first cycle and decreased to 75.15% at the end of the fourth cycle. The adsorption of color and phosphate from real textile wastewater was also instigated. The removal efficiencies for color and phosphate ions reached 80.24% and 90.00%, respectively. Therefore, the prepared PEI-CaAlg can be considered as a novel, eco-friendly, and cost-effective adsorbent for simultaneous dye and phosphate adsorption. PRACTITIONER POINTS: This study aims to modify the surface of calcium alginate beads with polyethyleneimine (PEI). The adsorption of RBBR and phosphate by the modified alginate beads (PEI-CaAlg) was investigated. PEI is an organic polymer with a linear/branch shape, which can increase the active sites on the adsorbent surface. PEI has one nitrogen atom in every three atoms provides a positive charge that can complex with the negatively charged molecules. The adsorption of RBBR and phosphate were carried out onto PEI-CaAlg.


Subject(s)
Alginates , Water Pollutants, Chemical , Adsorption , Anthraquinones , Hydrogen-Ion Concentration , Kinetics , Phosphates , Polyethyleneimine
10.
Water Environ Res ; 93(11): 2623-2636, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34288251

ABSTRACT

In this study, calcium alginate (Ca-Alg) beads, an inexpensive, easily available, biodegradable material, were activated with anionic surfactant and used for the treatment of wastewater contaminated with waste motor oil. First, polyethyleneimine (PEI) was used to bind sodium dodecyl sulfate (SDS) onto the Ca-Alg beads' surface. Three different SDS concentrations (25, 50, & 100 mg/L) were prepared and treated with Ca-Alg beads for 1, 2, 4, 6, and 24 h. SDS binding yield reached equilibrium at the end of the 24 h, and the binding efficiencies of 25, 50, and 100 mg SDS/L were determined 84%, 72%, and 48%, respectively. The effect of pH between 2 and 10 was also investigated on oil adsorption. Maximum adsorption efficiency (77%) was obtained in the range of pH 6-8. After determining the optimum pH value for oil adsorption, the effect of beads amount (2.5-30 g/L) was also investigated on oil removal efficiency. When the amount of beads increased from 2.5 to 30 g/L, the oil adsorption efficiency increased from 77% to 95%. It was also observed that the oil adsorption efficiency increased when the size of the beads decreased from 4 to 1 mm. For the kinetic calculation, three different concentrations (250, 500, &1000 mg/L) of oily solution were prepared, and oil adsorption was investigated versus time. The kinetic studies for the adsorption of the oily solution using SDS functionalized Ca-Alg beads showed the second-order kinetics. When the initial oil concentration increased from 250 to 1000 mg/L, the amount of adsorbed oil molecules increased from 8.34 to 22.12 mg/g. Langmuir and Freundlich isotherm models were used to explain the relationship between adsorbent and adsorbate, and Langmuir isotherm was the most suitable model because of its high regression coefficient (r2 ) value. Column studies were also carried out, and it was concluded that the proposed adsorbent can be used effectively in the treatment of oily wastewater. PRACTITIONER POINTS: Although there are numerous adsorption studies and studies on the use of alginate beads in various fields in the literature, its use in oil treatment has not been found to our knowledge. The study aims to produce a selective adsorbent for the removal of oil from water by functionalizing the surface of the alginate beads with active agents. In conventional adsorption studies, pollutants are transported from liquid phase to solid phase. With the proposed new adsorbent material, oils will be specifically removed from wastewater and used as fuel. Thus, obtaining an organic origin adsorbent with high calorific value constitutes the original value of the study. In addition, no secondary pollutants will emerge after the adsorption process.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Alginates , Hydrogen-Ion Concentration , Kinetics , Sodium Dodecyl Sulfate
11.
Water Sci Technol ; 83(5): 1242-1249, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33724950

ABSTRACT

Recently, the utilization of wastes, recovery of high value-added products from waste, and their use as raw materials in other industries with the logic of industrial symbiosis has become an important issue. In this study, removal efficiency of Reactive Orange 16 (RO16) dye from aqueous solution was studied using TiO2 catalyst recycled from an industrial waste effluent. The recycling of TiO2 waste from a paints manufacturing industry was carried out by sintering the TiO2-containing waste. The catalyst usability of TiO2-containing powder was then investigated in the removal of RO16 dye by photocatalytic oxidation process. In photocatalytic oxidation studies, TiO2/UV and TiO2/UV/H2O2 processes were investigated, where the effect of annealing temperature, the effect of H2O2 concentration, and the adsorption and photocatalytic effects on RO16 dye removal were studied. The results showed that 100% RO16 removal was obtained for the 10 mg/L initial RO16 concentration using the TiO2 (1 g/L)/UV process. At high initial RO16 concentration (50 mg/L), 100% RO16 removal was achieved by adding 10 mM H2O2.


Subject(s)
Hydrogen Peroxide , Water Purification , Catalysis , Titanium , Wastewater
12.
Water Sci Technol ; 83(3): 701-714, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33600373

ABSTRACT

In this study, we investigated the production conditions of Quercus coccifera hydrochar, which is an inexpensive and easy available adsorbent, for the adsorption of Basic Red 18 (BR18) azo dye. The hydrochar was produced in the eco-friendly subcritical water medium (SWM). The effects of the pH (2-10), adsorbent size (45-106 µm), adsorbent dose (0.5-1.5 g/L), dye concentration (40-455 mg/L), and contact time (5-120 min) were studied via optimization experiments. The optimum conditions were pH 10, particle size of 45 µm, particle amount of 1.5 g/L, dye concentration of 455 mg/L, and 60 min. The removal efficiency increased sharply for the first 5 min; after that the removal efficiency reached a steady state at 60 min, with a maximum removal of 88.7%. The kinetic studies for the adsorption of BR18 dye in aqueous solution using hydrochar showed pseudo-second-order kinetics. The Langmuir and Freundlich isotherm models were used to explain the relationship between adsorbent and adsorbate, and Freundlich isotherm was the most suitable model because of its high regression coefficient (R2) value. The intraparticle diffusion model was used to determine the adsorption mechanism of BR18 onto Q. coccifera acorn hydrochar. Desorption studies were also carried out using different types of acid and different molarities.


Subject(s)
Quercus , Water Pollutants, Chemical , Adsorption , Coloring Agents , Hydrogen-Ion Concentration , Kinetics , Thermodynamics , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...