Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Vet Res ; 67(4): 583-591, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130455

ABSTRACT

Introduction: MicroRNAs (miRNAs), a class of noncoding small RNAs, have been recognised as potential biomarkers of mammary gland conditions, including bovine mastitis diagnosis. The aim of this study was to quantify selected miRNAs in the milk of mastitic cows. Material and Methods: Milk samples (n = 90) were collected from healthy and mastitic dairy cows originating from local dairy cattle farms located in the west of Poland. MicroRNAs of the miR-21a, miR-92a, miR-146a and miR-383 species were quantified using the highly sensitive droplet digital PCR method. Direct measurement of somatic cell count (SCC) was performed using a cell counter. Cows were divided into three groups: those with an SCC below 200,000/mL were designated Low (n = 25), those with an SCC between 200,000 and 999,999 were Medium (n = 34), and those with an SCC of 1,000,000 or higher were High (n = 31). Microbiological analyses were performed using standard culture testing. Results: The level of miR-383 was very low and this miRNA was excluded from analysis. The miR-92a was used to normalise miR-21a and miR-146a expression levels. The obtained results of expression of miR-21a and miR-146a correlated with somatic cell number (R = 0.53 and 0.79, respectively). Conclusion: These results show that ddPCR is a useful method for quantifying miRNAs in raw cow milk. It seems that miR-146a is a promising marker for bovine mastitis, although further studies are needed to select a panel of miRNAs that can be used in mastitis monitoring in Poland.

2.
Genes (Basel) ; 14(3)2023 03 09.
Article in English | MEDLINE | ID: mdl-36980955

ABSTRACT

Extracellular miRNAs have attracted considerable interest because of their role in intercellular communication, as well as because of their potential use as diagnostic and prognostic biomarkers for many diseases. It has been shown that miRNAs secreted by adipose tissue can contribute to the pathophysiology of obesity. Detailed knowledge of the expression of intracellular and extracellular microRNAs in adipocytes is thus urgently required. The system of in vitro differentiation of mesenchymal stem cells (MSCs) into adipocytes offers a good model for such an analysis. The aim of this study was to quantify eight intracellular and extracellular miRNAs (miR-21a, miR-26b, miR-30a, miR-92a, miR-146a, miR-148a, miR-199, and miR-383a) during porcine in vitro adipogenesis using droplet digital PCR (ddPCR), a highly sensitive method. It was found that only some miRNAs associated with the inflammatory process (miR-21a, miR-92a) were highly expressed in differentiated adipocytes and were also secreted by cells. All miRNAs associated with adipocyte differentiation were highly abundant in both the studied cells and in the cell culture medium. Those miRNAs showed a characteristic expression profile with upregulation during differentiation.


Subject(s)
MicroRNAs , Swine , Animals , MicroRNAs/metabolism , Adipogenesis/genetics , Cell Differentiation/genetics , Adipose Tissue/metabolism , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...