Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(5): 057202, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364166

ABSTRACT

The nonequilibrium dynamics of domain wall initial states in a classical anisotropic Heisenberg chain exhibits a striking coexistence of apparently linear and nonlinear behaviors: the propagation and spreading of the domain wall can be captured quantitatively by linear, i.e., noninteracting, spin wave theory absent its usual justifications; while, simultaneously, for a wide range of easy-plane anisotropies, emission can take the place of stable solitons-a process and objects intrinsically associated with interactions and nonlinearities. The easy-axis domain wall only has transient dynamics, the isotropic one broadens diffusively, while the easy-plane one yields a pair of ballistically counterpropagating domain walls which, unusually, broaden subdiffusively, their width scaling as t^{1/3}.

2.
Phys Rev Lett ; 131(5): 053001, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37595247

ABSTRACT

We study the nonequilibrium dynamics of dipoles confined in multiple stacked two-dimensional layers realizing a long-range interacting quantum spin 1/2 XXX model. We demonstrate that strong in-plane interactions can protect a manifold of collective layer dynamics. This then allows us to map the many-body spin dynamics to bosonic models. In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics, resulting in exponential production of entangled pairs and generation of metrologically useful entanglement from initially prepared product states. In multilayer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction. Our study illustrates how the control over interactions, lattice geometry, and state preparation in interacting dipolar systems uniquely afforded by AMO platforms such as Rydberg and magnetic atoms, polar molecules, or trapped ions allows for the control over the temporal and spatial propagation of correlations for applications in quantum sensing and quantum simulation.

3.
Nature ; 613(7943): 262-267, 2023 01.
Article in English | MEDLINE | ID: mdl-36631646

ABSTRACT

Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids1-3. The realization of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations4-8, topological quantum gates9-11 and exotic few-body states12-15. However, p-wave and other antisymmetric interactions are weak in naturally occurring systems16,17, and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss18-24. Here we create isolated pairs of spin-polarized fermionic atoms in a multiorbital three-dimensional optical lattice. We spectroscopically measure elastic p-wave interaction energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance. The interaction strengths are widely tunable by the magnetic field and confinement strength, and yet collapse onto a universal curve when rescaled by the harmonic energy and length scales of a single lattice site. The absence of three-body processes enables the observation of elastic unitary p-wave interactions, as well as coherent oscillations between free-atom and interacting-pair states. All observations are compared both to an exact solution using a p-wave pseudopotential and to numerical solutions using an ab initio interaction potential. The understanding and control of on-site p-wave interactions provides a necessary component for the assembly of multiorbital lattice models25,26 and a starting point for investigations of how to protect such systems from three-body recombination in the presence of tunnelling, for instance using Pauli blocking and lattice engineering27,28.

4.
Science ; 375(6586): 1299-1303, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35298246

ABSTRACT

Microscopic control over polar molecules with tunable interactions enables the realization of distinct quantum phenomena. Using an electric field gradient, we demonstrated layer-resolved state preparation and imaging of ultracold potassium-rubidium molecules confined to two-dimensional planes in an optical lattice. The rotational coherence was maximized by rotating the electric field relative to the light polarization for state-insensitive trapping. Spatially separated molecules in adjacent layers interact through dipolar spin exchange of rotational angular momentum; by adjusting these interactions, we regulated the local chemical reaction rate. The resonance width of the exchange process vastly exceeded the dipolar interaction energy, an effect attributed to thermal energy. This work realized precise control of interacting molecules, enabling electric field microscopy on subwavelength scales and allowing access to unexplored physics in two-dimensional systems.

5.
Phys Rev Lett ; 128(9): 093001, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35302810

ABSTRACT

The observation of Pauli blocking of atomic spontaneous decay via direct measurements of the atomic population requires the use of long-lived atomic gases where quantum statistics, atom recoil, and cooperative radiative processes are all relevant. We develop a theoretical framework capable of simultaneously accounting for all these effects in the many-body quantum degenerate regime. We apply it to atoms in a single 2D pancake or arrays of pancakes featuring an effective Λ level structure (one excited and two degenerate ground states). We identify a parameter window in which a factor of 2 extension in the atomic lifetime clearly attributable to Pauli blocking should be experimentally observable in deeply degenerate gases with ∼10^{3} atoms. We experimentally observe a suppressed excited-state decay rate, fully consistent with the theory prediction of an enhanced excited-state lifetime, on the ^{1}S_{0}-^{3}P_{1} transition in ^{87}Sr atoms.

6.
Phys Rev E ; 106(6): L062202, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671135

ABSTRACT

Motivated by the Kardar-Parisi-Zhang (KPZ) scaling recently observed in the classical ferromagnetic Heisenberg chain, we investigate the role of solitonic excitations in this model. We find that the Heisenberg chain, although well known to be nonintegrable, supports a two-parameter family of long-lived solitons. We connect these to the exact soliton solutions of the integrable Ishimori chain with ln(1+S_{i}·S_{j}) interactions. We explicitly construct infinitely long-lived stationary solitons, and provide an adiabatic construction procedure for moving soliton solutions, which shows that Ishimori solitons have a long-lived Heisenberg counterpart when they are not too narrow and not too fast moving. Finally, we demonstrate their presence in thermal states of the Heisenberg chain, even when the typical soliton width is larger than the spin correlation length, and argue that these excitations likely underlie the KPZ scaling.


Subject(s)
Magnets , Models, Molecular
7.
Phys Rev Lett ; 127(14): 143401, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652195

ABSTRACT

We consider the nonequilibrium orbital dynamics of spin-polarized ultracold fermions in the first excited band of an optical lattice. A specific lattice depth and filling configuration is designed to allow the p_{x} and p_{y} excited orbital degrees of freedom to act as a pseudospin. Starting from the full Hamiltonian for p-wave interactions in a periodic potential, we derive an extended Hubbard-type model that describes the anisotropic lattice dynamics of the excited orbitals at low energy. We then show how dispersion engineering can provide a viable route to realizing collective behavior driven by p-wave interactions. In particular, Bragg dressing and lattice depth can reduce single-particle dispersion rates, such that a collective many-body gap is opened with only moderate Feshbach enhancement of p-wave interactions. Physical insight into the emergent gap-protected collective dynamics is gained by projecting the Hamiltonian into the Dicke manifold, yielding a one-axis twisting model for the orbital pseudospin that can be probed using conventional Ramsey-style interferometry. Experimentally realistic protocols to prepare and measure the many-body dynamics are discussed, including the effects of band relaxation, particle loss, spin-orbit coupling, and doping.

8.
Phys Rev Lett ; 126(11): 113401, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33798369

ABSTRACT

We study a bulk fermionic dipolar molecular gas in the quantum degenerate regime confined in a two-dimensional geometry. Using two rotational states of the molecules, we encode a spin 1/2 degree of freedom. To describe the many-body spin dynamics of the molecules, we derive a long-range interacting XXZ model valid in the regime where motional degrees of freedom are frozen. Because of the spatially extended nature of the harmonic oscillator modes, the interactions in the spin model are very long ranged, and the system behaves close to the collective limit, resulting in robust dynamics and generation of entanglement in the form of spin squeezing even at finite temperature and in the presence of dephasing and chemical reactions. We discuss how the internal state structure can be exploited to realize time reversal and enhanced metrological sensing protocols.

9.
Phys Rev Lett ; 121(25): 250602, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608848

ABSTRACT

We study the chaotic dynamics in a classical many-body system of interacting spins on the kagome lattice. We characterize many-body chaos via the butterfly effect as captured by an appropriate out-of-time-ordered commutator. Due to the emergence of a spin-liquid phase, the chaotic dynamics extends all the way to zero temperature. We thus determine the full temperature dependence of two complementary aspects of the butterfly effect: the Lyapunov exponent, µ, and the butterfly speed, v_{b}, and study their interrelations with usual measures of spin dynamics such as the spin-diffusion constant, D, and spin-autocorrelation time, τ. We find that they all exhibit power-law behavior at low temperature, consistent with scaling of the form D∼v_{b}^{2}/µ and τ^{-1}∼T. The vanishing of µâˆ¼T^{0.48} is parametrically slower than that of the corresponding quantum bound, µâˆ¼T, raising interesting questions regarding the semiclassical limit of such spin systems.

10.
Phys Rev Lett ; 119(24): 247201, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29286718

ABSTRACT

We study a class of continuous spin models with bond disorder including the kagome Heisenberg antiferromagnet. For weak disorder strength, we find discrete ground states whose number grows exponentially with system size. These states do not exhibit zero-energy excitations characteristic of highly frustrated magnets but instead are local minima of the energy landscape. This represents a spin liquid version of the phenomenon of jamming familiar from granular media and structural glasses. Correlations of this jammed spin liquid, which upon increasing the disorder strength gives way to a conventional spin glass, may be algebraic (Coulomb type) or exponential.

SELECTION OF CITATIONS
SEARCH DETAIL
...