Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 92(8): 083503, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34470395

ABSTRACT

The Thomson scattering (TS) diagnostic, one of the key diagnostics used on the tokamaks around the world, is planned for the COMPASS-U tokamak, which is recently under design and construction in the Institute of Plasma Physics in Prague, Czech Republic. This tokamak is supposed to be a world-unique, high magnetic field device with hot walls, allowing for the study of the plasma exhaust in advanced operational scenarios and testing cutting-edge technologies relevant to future fusion reactors, e.g., use of liquid metals. The core and edge TS systems are planned to be designed and operational, with a limited performance, already in the early stage of the tokamak operation. In this contribution, requirements and the most important constraints defining the TS system design are presented. The impact of both the possible collection lens location and spatial resolution on the plasma pedestal observation is simulated. Design considerations also take into account the high-resolution TS core and edge systems available from the COMPASS tokamak, which will be reused. The collection lenses will be newly built. Extension of the detection system will complete the plasma radius coverage in the future. The divertor TS is considered for later periods.

2.
Rev Sci Instrum ; 92(5): 053532, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243312

ABSTRACT

This contribution presents a Thomson scattering module developed for the Raysect and Cherab framework. Detailed models of spectroscopic diagnostic systems can be created in the framework, which deliver synthetic data with high precision due to accurate physical treatment of ray propagation and radiation phenomena. The addition of the presented module will allow us to model Thomson scattering systems that can aid both data validation and design. Two examples of such application are given. The first example shows the application of the module on the COMPASS tokamak edge Thomson scattering diagnostic and experimental data. The second example shows the possibility to use the framework and the Thomson scattering module as a design support tool.

3.
Rev Sci Instrum ; 89(10): 10C105, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399913

ABSTRACT

Concerning plasma diagnostics based on Thomson scattering (TS), precise adjustment and proper alignment is of great importance in order to provide reliable and accurate measurements. Any misalignment could result in an incorrectly determined plasma density or prevent the measurement with this type of diagnostic altogether. Suitable means of alignment monitoring should be integrated into each TS diagnostic system. Variations of commonly used methods are discussed in this article. Correlation of results from alignment control with performed measurements of vibrations on the COMPASS tokamak is presented. Various techniques of optimization of alignment monitoring are shown. The optimal technique, which could be accommodated during the construction of TS diagnostic systems in future fusion devices, is proposed.

4.
Rev Sci Instrum ; 87(11): 11E536, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910584

ABSTRACT

A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

5.
Rev Sci Instrum ; 87(4): 043510, 2016 04.
Article in English | MEDLINE | ID: mdl-27131677

ABSTRACT

The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

6.
Rev Sci Instrum ; 85(11): 11E431, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430338

ABSTRACT

The core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to ∼1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described. Several further upgrades of the TS system, like a triggering unit and piezo motor driven vacuum window shutter, are introduced as well. The edge TS system, together with the core TS, is now in routine operation and provides electron temperature and density profiles.

7.
Rev Sci Instrum ; 83(10): 10E327, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126985

ABSTRACT

COMPASS tokamak shots at low magnetic field feature overdense plasmas during the extended current flat-top phase. The first harmonic of the electron cyclotron emission is completely cutoff for O and X modes and so the emission caused by electron Bernstein waves (EBWs) propagating obliquely with respect to the magnetic field and undergoing so called EBW-X-O conversion process can be observed. We perform an angular scan of the EBW emission during a set of comparable shots in order to determine the optimum antenna direction. A weak dependence of the radiative temperature on the antenna angles indicates an influence of multiple reflections from the vessel wall. The low temperature at the mode conversion region is responsible for the collisional damping of EBW, which can explain several times lower measured radiative temperature than the electron temperature measured by the Thomson scattering system.

8.
Rev Sci Instrum ; 83(10): 10E350, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23127007

ABSTRACT

The electron density and temperature profiles measured by the Thomson scattering diagnostic on the COMPASS tokamak are used for estimation of electron kinetic energy, energy confinement time, and effective charge number Z(eff). Data are compared with the line-integrated electron density measured by a microwave interferometer in an ohmically heated plasma with a circular cross section. An error analysis of both electron temperature and density are performed by two methods-a constant chi-square boundaries method and a Monte Carlo simulation, determining asymmetrical error bars for the electron temperature.

9.
Rev Sci Instrum ; 81(10): 10D511, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033866

ABSTRACT

A new Thomson scattering diagnostic has been designed and is currently being installed on the COMPASS tokamak in IPP Prague in the Czech Republic. The requirements for this system are very stringent with approximately 3 mm spatial resolution at the plasma edge. A critical part of this diagnostic is the laser source. To achieve the specified parameters, a multilaser solution is utilized. Two 30 Hz 1.5 J Nd:YAG laser systems, used at the fundamental wavelength of 1064 nm, are located outside the tokamak area at a distance of 20 m from the tokamak. The design of the laser beam transport path is presented. The approach leading to a final choice of optimal focusing optics is given. As well as the beam path to the tokamak, a test path of the same optical length was built. Performance tests of the laser system carried out using the test path are described.

10.
Rev Sci Instrum ; 81(10): 10D531, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033886

ABSTRACT

A new Thomson scattering diagnostic system has been designed and is being built now on the COMPASS tokamak at the Institute of Plasma Physics ASCR in Prague (IPP Prague) in the Czech Republic. This contribution focuses on design, development, and installation of the light collection and detection system. High spatial resolution of 3 mm will be achieved by a combination of design of collection optics and connected polychromators. Imaging characteristics of both core and edge plasma collection objectives are described and fiber backplane design is presented. Several calibration procedures are discussed. The operational deployment of the Thomson scattering diagnostic is planned by the end of 2010.

SELECTION OF CITATIONS
SEARCH DETAIL
...