Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Neurosci ; 44(5)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37989593

ABSTRACT

Scientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming stimuli. In line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is primarily integrated. Furthermore, it is unknown how responses to pattern-violating stimuli evolve over time as an animal gains more experience with them. Here, we address these unanswered questions by analyzing responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons tracked over multiple days in primary visual cortex of awake, behaving female and male mice. We use sequences of Gabor patches with patterns in their orientations to create pattern-matching and pattern-violating stimuli, and two-photon calcium imaging to record neuronal responses. Many neurons in both layers show large differences between their responses to pattern-matching and pattern-violating stimuli. Interestingly, these responses evolve in opposite directions in the somata and distal apical dendrites, with somata becoming less sensitive to pattern-violating stimuli and distal apical dendrites more sensitive. These differences between the somata and distal apical dendrites may be important for hierarchical computation of sensory predictions and learning, since these two compartments tend to receive bottom-up and top-down information, respectively.


Subject(s)
Calcium , Neocortex , Male , Female , Mice , Animals , Calcium/physiology , Neurons/physiology , Dendrites/physiology , Pyramidal Cells/physiology , Neocortex/physiology
2.
Elife ; 122023 07 24.
Article in English | MEDLINE | ID: mdl-37486105

ABSTRACT

Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.


Subject(s)
Neurons , Primary Visual Cortex , Animals , Mice , Neurons/physiology , Brain , Models, Neurological
3.
Sci Data ; 10(1): 287, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198203

ABSTRACT

The apical dendrites of pyramidal neurons in sensory cortex receive primarily top-down signals from associative and motor regions, while cell bodies and nearby dendrites are heavily targeted by locally recurrent or bottom-up inputs from the sensory periphery. Based on these differences, a number of theories in computational neuroscience postulate a unique role for apical dendrites in learning. However, due to technical challenges in data collection, little data is available for comparing the responses of apical dendrites to cell bodies over multiple days. Here we present a dataset collected through the Allen Institute Mindscope's OpenScope program that addresses this need. This dataset comprises high-quality two-photon calcium imaging from the apical dendrites and the cell bodies of visual cortical pyramidal neurons, acquired over multiple days in awake, behaving mice that were presented with visual stimuli. Many of the cell bodies and dendrite segments were tracked over days, enabling analyses of how their responses change over time. This dataset allows neuroscientists to explore the differences between apical and somatic processing and plasticity.


Subject(s)
Pyramidal Cells , Visual Cortex , Animals , Mice , Cell Body , Dendrites/physiology , Neurons , Pyramidal Cells/physiology , Visual Cortex/physiology
4.
Front Comput Neurosci ; 17: 1040629, 2023.
Article in English | MEDLINE | ID: mdl-36994445

ABSTRACT

Neurophysiological differentiation (ND), a measure of the number of distinct activity states that a neural population visits over a time interval, has been used as a correlate of meaningfulness or subjective perception of visual stimuli. ND has largely been studied in non-invasive human whole-brain recordings where spatial resolution is limited. However, it is likely that perception is supported by discrete neuronal populations rather than the whole brain. Therefore, here we use Neuropixels recordings from the mouse brain to characterize the ND metric across a wide range of temporal scales, within neural populations recorded at single-cell resolution in localized regions. Using the spiking activity of thousands of simultaneously recorded neurons spanning 6 visual cortical areas and the visual thalamus, we show that the ND of stimulus-evoked activity of the entire visual cortex is higher for naturalistic stimuli relative to artificial ones. This finding holds in most individual areas throughout the visual hierarchy. Moreover, for animals performing an image change detection task, ND of the entire visual cortex (though not individual areas) is higher for successful detection compared to failed trials, consistent with the assumed perception of the stimulus. Together, these results suggest that ND computed on cellular-level neural recordings is a useful tool highlighting cell populations that may be involved in subjective perception.

5.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-35022186

ABSTRACT

Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of large populations of neurons relates to what an observer actually perceives. Since neurophysiological differences must underlie differences among percepts, differentiation analysis-quantifying distinct patterns of neurophysiological activity-has been proposed as an "inside-out" approach that addresses this question. This methodology contrasts with "outside-in" approaches such as feature tuning and decoding analyses, which are defined in terms of extrinsic experimental variables. Here, we used two-photon calcium imaging in mice of both sexes to systematically survey stimulus-evoked neurophysiological differentiation (ND) in excitatory neuronal populations in layers (L)2/3, L4, and L5 across five visual cortical areas (primary, lateromedial, anterolateral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find that unscrambled stimuli evoke greater ND than scrambled stimuli specifically in L2/3 of the anterolateral and anteromedial areas, and that this effect is modulated by arousal state and locomotion. By contrast, decoding performance was far above chance and did not vary substantially across areas and layers. Differentiation also differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the ethological relevance of individual stimuli.


Subject(s)
Visual Cortex , Animals , Female , Locomotion/physiology , Male , Mice , Neurons/physiology , Neurophysiology , Photic Stimulation , Visual Cortex/physiology
6.
Nature ; 592(7852): 86-92, 2021 04.
Article in English | MEDLINE | ID: mdl-33473216

ABSTRACT

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.


Subject(s)
Action Potentials/physiology , Visual Cortex/anatomy & histology , Visual Cortex/physiology , Animals , Datasets as Topic , Electrophysiology , Male , Mice , Mice, Inbred C57BL , Photic Stimulation , Thalamus/anatomy & histology , Thalamus/cytology , Thalamus/physiology , Visual Cortex/cytology
7.
PLoS Comput Biol ; 16(11): e1008386, 2020 11.
Article in English | MEDLINE | ID: mdl-33253147

ABSTRACT

Experimental studies in neuroscience are producing data at a rapidly increasing rate, providing exciting opportunities and formidable challenges to existing theoretical and modeling approaches. To turn massive datasets into predictive quantitative frameworks, the field needs software solutions for systematic integration of data into realistic, multiscale models. Here we describe the Brain Modeling ToolKit (BMTK), a software suite for building models and performing simulations at multiple levels of resolution, from biophysically detailed multi-compartmental, to point-neuron, to population-statistical approaches. Leveraging the SONATA file format and existing software such as NEURON, NEST, and others, BMTK offers a consistent user experience across multiple levels of resolution. It permits highly sophisticated simulations to be set up with little coding required, thus lowering entry barriers to new users. We illustrate successful applications of BMTK to large-scale simulations of a cortical area. BMTK is an open-source package provided as a resource supporting modeling-based discovery in the community.


Subject(s)
Brain Mapping/methods , Brain/physiology , Computational Biology , Software , Action Potentials , Biophysical Phenomena , Humans , Nerve Net
8.
Neuron ; 106(3): 388-403.e18, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32142648

ABSTRACT

Structural rules underlying functional properties of cortical circuits are poorly understood. To explore these rules systematically, we integrated information from extensive literature curation and large-scale experimental surveys into a data-driven, biologically realistic simulation of the awake mouse primary visual cortex. The model was constructed at two levels of granularity, using either biophysically detailed or point neurons. Both variants have identical network connectivity and were compared to each other and to experimental recordings of visual-driven neural activity. While tuning these networks to recapitulate experimental data, we identified rules governing cell-class-specific connectivity and synaptic strengths. These structural constraints constitute hypotheses that can be tested experimentally. Despite their distinct single-cell abstraction, both spatially extended and point models perform similarly at the level of firing rate distributions for the questions we investigated. All data and models are freely available as a resource for the community.


Subject(s)
Models, Neurological , Neurons/physiology , Visual Cortex/physiology , Animals , Mice , Synapses/physiology , Systems Integration , Visual Cortex/cytology
9.
PLoS Comput Biol ; 16(2): e1007696, 2020 02.
Article in English | MEDLINE | ID: mdl-32092054

ABSTRACT

Increasing availability of comprehensive experimental datasets and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational models in neuroscience. To support construction and simulation, as well as sharing of such large-scale models, a broadly applicable, flexible, and high-performance data format is necessary. To address this need, we have developed the Scalable Open Network Architecture TemplAte (SONATA) data format. It is designed for memory and computational efficiency and works across multiple platforms. The format represents neuronal circuits and simulation inputs and outputs via standardized files and provides much flexibility for adding new conventions or extensions. SONATA is used in multiple modeling and visualization tools, and we also provide reference Application Programming Interfaces and model examples to catalyze further adoption. SONATA format is free and open for the community to use and build upon with the goal of enabling efficient model building, sharing, and reproducibility.


Subject(s)
Brain/physiology , Computational Biology/methods , Neurosciences , Algorithms , Brain Mapping , Computer Simulation , Databases, Factual , Humans , Models, Neurological , Neurons/physiology , Programming Languages , Reproducibility of Results , Software
10.
PLoS Comput Biol ; 14(11): e1006535, 2018 11.
Article in English | MEDLINE | ID: mdl-30419013

ABSTRACT

Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.


Subject(s)
Visual Cortex/physiology , Animals , Computer Simulation , Mice , Models, Neurological , Neurons/metabolism , Synapses/metabolism , Thalamus/physiology , Visual Cortex/cytology
11.
PLoS One ; 13(8): e0201630, 2018.
Article in English | MEDLINE | ID: mdl-30071069

ABSTRACT

There is a significant interest in the neuroscience community in the development of large-scale network models that would integrate diverse sets of experimental data to help elucidate mechanisms underlying neuronal activity and computations. Although powerful numerical simulators (e.g., NEURON, NEST) exist, data-driven large-scale modeling remains challenging due to difficulties involved in setting up and running network simulations. We developed a high-level application programming interface (API) in Python that facilitates building large-scale biophysically detailed networks and simulating them with NEURON on parallel computer architecture. This tool, termed "BioNet", is designed to support a modular workflow whereby the description of a constructed model is saved as files that could be subsequently loaded for further refinement and/or simulation. The API supports both NEURON's built-in as well as user-defined models of cells and synapses. It is capable of simulating a variety of observables directly supported by NEURON (e.g., spikes, membrane voltage, intracellular [Ca++]), as well as plugging in modules for computing additional observables (e.g. extracellular potential). The high-level API platform obviates the time-consuming development of custom code for implementing individual models, and enables easy model sharing via standardized files. This tool will help refocus neuroscientists on addressing outstanding scientific questions rather than developing narrow-purpose modeling code.


Subject(s)
Models, Neurological , Software , Animals , Mice , Nerve Net/physiology , Neurons/physiology , Photic Stimulation , Synapses/physiology
12.
J Comput Neurosci ; 44(1): 63-74, 2018 02.
Article in English | MEDLINE | ID: mdl-29139049

ABSTRACT

Directed information transmission is paramount for many social, physical, and biological systems. For neural systems, scientists have studied this problem under the paradigm of feedforward networks for decades. In most models of feedforward networks, activity is exclusively driven by excitatory neurons and the wiring patterns between them, while inhibitory neurons play only a stabilizing role for the network dynamics. Motivated by recent experimental discoveries of hippocampal circuitry, cortical circuitry, and the diversity of inhibitory neurons throughout the brain, here we illustrate that one can construct such networks even if the connectivity between the excitatory units in the system remains random. This is achieved by endowing inhibitory nodes with a more active role in the network. Our findings demonstrate that apparent feedforward activity can be caused by a much broader network-architectural basis than often assumed.


Subject(s)
Brain/physiology , Models, Neurological , Nerve Net/physiology , Neural Inhibition , Neurons/physiology , Action Potentials/physiology , Animals , Brain/cytology , Computer Simulation , Humans , Neural Networks, Computer , Time Factors
13.
Sleep ; 40(6)2017 06 01.
Article in English | MEDLINE | ID: mdl-28431164

ABSTRACT

Study Objectives: To better understand the distinct activity patterns of the brain during sleep, we observed and investigated periods of diminished oscillatory and population spiking activity lasting for seconds during non-rapid eye movement (non-REM) sleep, which we call "LOW" activity sleep. Methods: We analyzed spiking and local field potential (LFP) activity of hippocampal CA1 region alongside neocortical electroencephalogram (EEG) and electromyogram (EMG) in 19 sessions from four male Long-Evans rats (260-360 g) during natural wake/sleep across the 24-hr cycle as well as data from other brain regions obtained from http://crcns.org.1,2. Results: LOW states lasted longer than OFF/DOWN states and were distinguished by a subset of "LOW-active" cells. LOW activity sleep was preceded and followed by increased sharp-wave ripple activity. We also observed decreased slow-wave activity and sleep spindles in the hippocampal LFP and neocortical EEG upon LOW onset, with a partial rebound immediately after LOW. LOW states demonstrated activity patterns consistent with sleep but frequently transitioned into microarousals and showed EMG and LFP differences from small-amplitude irregular activity during quiet waking. Their likelihood decreased within individual non-REM epochs yet increased over the course of sleep. By analyzing data from the entorhinal cortex of rats,1 as well as the hippocampus, the medial prefrontal cortex, the postsubiculum, and the anterior thalamus of mice,2 obtained from http://crcns.org, we confirmed that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. Conclusions: We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep and may serve a restorative function.


Subject(s)
Brain/physiology , Sleep/physiology , Action Potentials/physiology , Animals , Anterior Thalamic Nuclei/physiology , Electroencephalography , Electromyography , Entorhinal Cortex/physiology , Hippocampus/physiology , Male , Mice , Prefrontal Cortex/physiology , Rats , Rats, Long-Evans
14.
Chaos ; 26(9): 094821, 2016 09.
Article in English | MEDLINE | ID: mdl-27781454

ABSTRACT

Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators.

15.
PLoS Comput Biol ; 12(8): e1005055, 2016 08.
Article in English | MEDLINE | ID: mdl-27494178

ABSTRACT

We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios.


Subject(s)
Caenorhabditis elegans/physiology , Connectome , Models, Neurological , Nerve Net/physiology , Animals , Computational Biology
16.
eNeuro ; 3(2)2016.
Article in English | MEDLINE | ID: mdl-27351022

ABSTRACT

Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25-P30, ≥ 50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments.


Subject(s)
Motor Cortex/physiopathology , Nerve Net/physiopathology , Neuronal Plasticity/physiology , Sleep Deprivation/pathology , Age Factors , Animals , Animals, Newborn , Carrier Proteins/genetics , Carrier Proteins/metabolism , Dependovirus/genetics , Electroencephalography , Functional Laterality , Humans , Linear Models , Machine Learning , Mice , Mice, Inbred C57BL , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sleep Deprivation/physiopathology , Transduction, Genetic
17.
PLoS Comput Biol ; 11(7): e1004196, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26176664

ABSTRACT

Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics.


Subject(s)
Action Potentials/physiology , Long-Term Potentiation/physiology , Models, Neurological , Nerve Net/anatomy & histology , Nerve Net/physiology , Neuronal Plasticity/physiology , Animals , Computer Simulation , Connectome , Humans , Models, Anatomic , Spatio-Temporal Analysis , Synaptic Transmission/physiology
18.
J Neurosci Methods ; 236: 92-106, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25169050

ABSTRACT

BACKGROUND: Current neuronal monitoring techniques, such as calcium imaging and multi-electrode arrays, enable recordings of spiking activity from hundreds of neurons simultaneously. Of primary importance in systems neuroscience is the identification of cell assemblies: groups of neurons that cooperate in some form within the recorded population. NEW METHOD: We introduce a simple, integrated framework for the detection of cell-assemblies from spiking data without a priori assumptions about the size or number of groups present. We define a biophysically-inspired measure to extract a directed functional connectivity matrix between both excitatory and inhibitory neurons based on their spiking history. The resulting network representation is analyzed using the Markov Stability framework, a graph theoretical method for community detection across scales, to reveal groups of neurons that are significantly related in the recorded time-series at different levels of granularity. RESULTS AND COMPARISON WITH EXISTING METHODS: Using synthetic spike-trains, including simulated data from leaky-integrate-and-fire networks, our method is able to identify important patterns in the data such as hierarchical structure that are missed by other standard methods. We further apply the method to experimental data from retinal ganglion cells of mouse and salamander, in which we identify cell-groups that correspond to known functional types, and to hippocampal recordings from rats exploring a linear track, where we detect place cells with high fidelity. CONCLUSIONS: We present a versatile method to detect neural assemblies in spiking data applicable across a spectrum of relevant scales that contributes to understanding spatio-temporal information gathered from systems neuroscience experiments.


Subject(s)
Action Potentials , Neurons/physiology , Signal Processing, Computer-Assisted , Algorithms , Ambystoma , Animals , Computer Simulation , Exploratory Behavior/physiology , Hippocampus/physiology , Markov Chains , Mice, Inbred C57BL , Models, Neurological , Neural Inhibition/physiology , Rats , Retinal Ganglion Cells/physiology , Space Perception/physiology , Tissue Culture Techniques
19.
PLoS One ; 9(3): e91350, 2014.
Article in English | MEDLINE | ID: mdl-24614529

ABSTRACT

This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators.


Subject(s)
Osmosis , Osmotic Pressure , Mimosa/cytology , Models, Theoretical , Robotics , Time Factors
20.
Opt Express ; 18(18): 18519-24, 2010 Aug 30.
Article in English | MEDLINE | ID: mdl-20940743

ABSTRACT

Photoacoustic microscopy (PAM) provides high resolution images with excellent image contrast based on optical absorption. The compact size and high repetition rate of pulsed microchip lasers make them attractive sources for PAM. However, their fixed wavelength output precludes their use in spectroscopic PAM. We are developing a tunable optical source based on a microchip laser that is suitable for spectroscopic PAM. Pulses from a 6.6 kHz repetition rate Q-switched Nd:YAG microchip laser are sent through a photonic crystal fiber with a zero dispersion wavelength at 1040 nm. The highly nonlinear optical propagation produces a supercontinuum spectrum spanning 500-1300 nm. A tunable band pass filter selects the desired wavelength band from the supercontinuum. Our PAM system employs optical focusing and a 25 MHz spherically focused detection transducer. En-face imaging experiments were performed at seven different wavelengths from 575 to 875 nm. A simple discriminant analysis of the multiwavelength photoacoustic data produces images that clearly distinguish the different absorbing regions of ink phantoms. These results suggest the potential of this compact tunable source for spectroscopic photoacoustic microscopy.


Subject(s)
Spectrophotometry/methods , Acoustics , Crystallization , Equipment Design , Gossypium/ultrastructure , Image Processing, Computer-Assisted , Lasers , Light , Optics and Photonics , Phantoms, Imaging , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...