Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 892: 164467, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37268115

ABSTRACT

Along its route through the agro-food system nitrogen (N) can be wasted, heightening diverse environmental problems. Geopolitical instabilities affect prices of N fertilisers and livestock feed, challenging production systems and increasing their need to reduce N waste. The analysis of N flows is essential to understanding the agroenvironmental performance of agro-food systems to detect leakages and to design strategies for reducing N pollution while producing feed and food. Sectorial analyses can mislead conclusions, prompting the need for integrated approaches. We present a multiscale analysis of N flows for the 1990-2015 period to identify both the strengths and weaknesses of the Spanish agro-food system. We constructed N budgets at three system scales, namely crop, livestock and the agro-food system, and at two spatial scales: national and regional (50 provinces). The big picture shows a country with increasing crop (575 to 634 GgN/yr) and livestock (138 to 202 GgN/yr, edible) production and nitrogen use efficiency improvements, especially for certain crop and livestock categories. Nevertheless, this falls short of reducing agricultural surpluses (812 GgN/yr) and external dependency, which is closely related to the externalisation of certain environmental impacts (system NUE, from 31 % to 19 % considering externalisation). The regional picture shows the contrasted operation between provinces, assigned to three agro-food system categories: fuelled by synthetic fertiliser (29 provinces), grassland inputs to livestock (5 provinces) or the net import of feed (16 provinces). Regional specialisation on crop or livestock production was reinforced, hampering good recirculation of N through livestock feed from regional cropland and their N fertilisation by regional livestock excretion. We conclude that pollution and external dependency need to be further reduced in Spain. To do so, the big picture of the full system is paramount but must be adapted to the regional particularities.


Subject(s)
Agriculture , Nitrogen , Animals , Environment , Food , Environmental Pollution , Livestock , Fertilizers
2.
Sci Total Environ ; 889: 164249, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37209724

ABSTRACT

Irrigation, one of the 28 agri-environmental indicators defined in the European Common Agricultural Policy, is often neglected in agricultural nitrogen (N) budgets, while it can be a considerable source of N in irrigated agriculture. The annual N input from irrigation water sources (NIrrig) to cropping systems was quantified for Europe for 2000-2010 at a resolution of 10 × 10 km, accounting for crop-specific gross irrigation requirements (GIR) and surface- and groundwater nitrate concentration. GIR were computed for 20 crops, while spatially explicit nitrate concentration in groundwater was derived using a random forest model. We show that although GIR were relatively stable (46-60 km3 yr-1), the Nirrig in Europe increased over the 10-year period (184 to 259 Gg N yr-1), approximately 68 % of which occurred in the Mediterranean region. The main hotspots appeared in areas with both high irrigation requirements and high groundwater nitrate concentration, reaching up to averaged values of 150 kg N ha-1 yr1. These were mainly located in Mediterranean Europe (Greece, Portugal and Spain) and to a lesser extent in Northern Europe (The Netherlands, Sweden and Germany). By not including NIrrig, environmental and agricultural policies are underestimating the real extent of N pollution hotspots in European irrigated systems.


Subject(s)
Groundwater , Nitrogen , Nitrogen/analysis , Nitrates/analysis , Agriculture , Europe , Nitrogen Cycle , Agricultural Irrigation
3.
J Environ Manage ; 337: 117732, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36944291

ABSTRACT

Ammonia (NH3) volatilization, nitrous oxide (N2O) emissions, and nitrate (NO3-) leaching from agriculture cause severe environmental hazards. Research studies and mitigation strategies have mostly focused on one of these nitrogen (N) losses at a time, often without an integrated view of the agro-food system. Yet, at the regional scale, N2O, NH3, and NO3- loss patterns reflect the structure of the whole agro-food system. Here, we analyzed at the resolution of NUTS2 administrative European Union (EU) regions, N fluxes through the agro-food systems of a Temperate-Mediterranean gradient (France, Spain, and Portugal) experiencing contrasting climate and soil conditions. We assessed the atmospheric and hydrological N emissions from soils and livestock systems. Expressed per ha agricultural land, NH3 volatilization varied in the range 6.2-44.4 kg N ha-1 yr-1, N2O emission and NO3 leaching 0.3-4.9 kg N ha-1 yr-1 and 5.4-154 kg N ha-1 yr-1 respectively. Overall, lowest N2O emission was found in the Mediterranean regions, where NO3- leaching was greater. NH3 volatilization in both temperate and Mediterranean regions roughly follows the distribution of livestock density. We showed that these losses are also closely correlated with the level of fertilization intensity and agriculture system specialization into either stockless crop farming or intensive livestock farming in each region. Moreover, we explored two possible future scenarios at the 2050 horizon: (1) a scenario based on the prescriptions of the EU-Farm-to-Fork (F2F) strategy, with 25% of organic farming, 10% of land set aside for biodiversity, 20% reduction in N fertilizers, and no diet change; and (2) a hypothetical agro-ecological (AE) scenario with generalized organic farming, reconnection of crop and livestock farming, and a healthier human diet with an increase in the share of vegetal protein to 65% (i.e., the Mediterranean diet). Results showed that the AE scenario, owing to its profound reconfiguration of the entire agro-food system would have the potential for much greater reductions in NH3, N2O, and NO3- emissions, namely, 60-81% reduction, while the F2F scenario would only reach 24-35% reduction of N losses.


Subject(s)
Agriculture , Nitrogen , Humans , Nitrogen/analysis , Agriculture/methods , Soil/chemistry , Ammonia/analysis , Farms , Fertilizers , Nitrous Oxide/analysis
4.
Water Res ; 225: 119135, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36155003

ABSTRACT

Reservoirs are active reactors for the biogeochemical cycling of carbon (C) and nutrients (nitrogen: N, phosphorus: P, and silica: Si), however, our in-depth understanding of C and nutrient cycling in reservoirs is still limited by the fact that it involves a variety of closely linked and coupled biogeochemical and hydrological processes. In this study, the updated process-based Barman model was applied to three reservoirs of the Seine Basin during 2019-2020, considering the variations of carbon dioxide (CO2) concentrations and key water quality variables. The model simulations captured well the observed seasonal variations of water quality variables, although discrepancies remained for some variables. According to the model, we found that: (1) the three reservoirs are autotrophic ecosystems and showed high removal efficiency of dissolved inorganic carbon and nutrients during 2019-2020; (2) phytoplankton assimilation, benthic denitrification, precipitation and dissolution of calcium carbonate, and gas exchange at the water-air interface are the dominant processes for water quality variations in reservoirs; (3) based on scenarios results, trophic state and mean water depth of reservoir would impact the biogeochemical processes and the retention efficiency of nitrate and dissolved silicate. Finally, we expect that the successful application of Barman model in the reservoirs of the Seine Basin could provide a useful tool for simulating reservoir water quality changes and thus evaluating the impacts of reservoirs on downstream water quality.


Subject(s)
Carbon Dioxide , Ecosystem , Nitrates , Phosphorus/analysis , Nitrogen/analysis , Nutrients , Calcium Carbonate , Silicon Dioxide , Environmental Monitoring , China
5.
Sci Data ; 8(1): 288, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716345

ABSTRACT

This paper presents EuropeAgriDB v1.0, a dataset of crop production and nitrogen (N) flows in European cropland 1961-2019. The dataset covers 26 present-day countries, detailing the cropland N harvests in 17 crop categories as well as cropland N inputs in synthetic fertilizers, manure, symbiotic fixation, and atmospheric deposition. The study builds on established methods but goes beyond previous research by combining data from FAOSTAT, Eurostat, and a range of national data sources. The result is a detailed, complete, and consistent dataset, intended as a basis for further analyses of past and present agricultural production patterns, as well as construction of scenarios for the future.


Subject(s)
Crop Production , Fertilizers , Grassland , Nitrogen , Europe , Nitrogen/analysis
6.
Nat Food ; 1(11): 667-668, 2020 Nov.
Article in English | MEDLINE | ID: mdl-37128039
7.
Sci Total Environ ; 660: 1486-1501, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30743941

ABSTRACT

France was a traditionally agricultural country until the first half of the 20th century. Today, it is the first European cereal producer, with cereal crops accounting for 40% of the agricultural surface area used, and is also a major country for livestock breeding with 25% of the European cattle livestock. This major socioecological transition, with rapid intensification and specialisation in an open global market, has been accompanied by deep environmental changes. To explore the changes in agricultural GHG emissions over the long term (1852-2014), we analysed the emission factors of N2O from field experiments covering major land uses, in a gradient of fertilisation and within a range of temperature and rainfall, and used CH4 emission coefficients for livestock categories, in terms of enteric and manure management, considering the historical changes in animal excretion rates. We also estimated indirect CO2 emissions, rarely accounted for in agricultural emissions, using coefficients found in the literature for the dominant energy consumption items (fertiliser production, field work and machinery, and feed import). From GHG emissions of ~30,000 ktons CO2 Eq yr-1 in 1852, reaching 54,000 ktons CO2 Eq yr-1 in 1955, emissions more than doubled during the 'Glorious thirties' (1950-1980), and peaked around 120,000 ktons CO2 Eq yr-1 in the early 2000s. For the 2010-2014 period, French agriculture GHG emissions stabilised at ~114,000 ktons CO2 Eq yr-1, distributed into 49% methane (CH4), 22% carbon dioxide (CO2) and 29% nitrous oxide (N2O). A regional approach through 33 regions in France shows a diversity of agriculture reflecting the hydro-ecoregion distribution and the agricultural specialisation of local areas. Exploring contrasting scenarios at the 2040 horizon suggests that only deep changes in the structure of the agro-food system would double the reduction of GHG emissions by the agricultural sector.


Subject(s)
Agriculture/methods , Edible Grain , Environmental Pollution/analysis , Greenhouse Gases/analysis , Livestock , Animals , Carbon Dioxide/analysis , Fertilizers , France , Methane/analysis , Rain , Temperature
8.
Sci Total Environ ; 637-638: 609-624, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29758418

ABSTRACT

The Grafs-Seneque/Riverstrahler model was implemented for the first time on the Loire River for the 2002-2014 period, to explore eutrophication after improvement of wastewater treatments. The model reproduced the interannual levels and seasonal trends of the major water quality variables. Although eutrophication has been impressively reduced in the drainage network, a eutrophication risk still exists at the coast, as shown by the N-ICEP indicator, pointing out an excess of nitrogen over silica and phosphorus. From maximum biomass exceeding 120 µgChla l-1 in the 1980's, we observed decreasing maximum values from 80 to 30 µgChla l-1 during the period studied. Several scenarios were explored. Regarding nutrient point sources, a low wastewater treatment scenario, similar to the situation in the 1980's, was elaborated, representing much greater pollution than the reference period (2002-2014). For diffuse sources, two agricultural scenarios were elaborated for reducing nitrogen, one with a strict application of the agricultural directives and another investigating the impact of radical structural changes in agriculture and the population's diet. Although reduced, a risk of eutrophication would remain, even with the most drastic scenario. In addition, a pristine scenario, with no human activity within the basin, was devised to assess water quality in a natural state. The impact of a change in hydrology on the Loire biogeochemical functioning was also explored according to the effect of climate change by the end of the 21st century. The EROS hydrological model was used to force Riverstrahler, considering the most pessimistic SRES A2 scenario run with the ARPEGE model. Nutrient fluxes all decreased due to a >50% reduction in the average annual discharge, overall reducing the risk of coastal eutrophication, but worsening the water quality status of the river network. The Riverstrahler model could be useful to help water managers contend with future threats in the Loire River, at the scale of its basin and at smaller nested scales.


Subject(s)
Environmental Monitoring , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Eutrophication , France , Hydrology , Rivers/chemistry
9.
Sci Total Environ ; 637-638: 695-705, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29758426

ABSTRACT

Narratives of two prospective scenarios for the future of French agriculture were elaborated by pushing several trends already acting on the dynamics of the current system to their logical end. The first one pursues the opening and specialization characterizing the long-term evolution of the last 50 years of most French agricultural regions, while the second assumes a shift, already perceptible through weak signals, towards more autonomy at the farm and regional scales, a reconnection of crop and livestock farming and a more frugal human diet. A procedure is proposed to translate these qualitative narratives into a quantitative description of the corresponding nutrient fluxes using the GRAFS (Generalized Representation of Agro-Food Systems) methodology, thus allowing a comprehensive exploration of the agronomical and environmental performance of these two scenarios. The results show that the pursuit of the opening and specialization of French agriculture, even complying with regulations regarding reasoned fertilization, would result in considerable environmental burdens namely in terms of water pollution. The scenario generalizing organic farming practices, reconnection of crop and livestock farming systems and a demitarian human diet makes it possible to meet the future national food demand while still exporting significant amounts of cereals to the international market and ensuring better groundwater quality in most French regions.

10.
Environ Sci Pollut Res Int ; 25(12): 11924-11939, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29450770

ABSTRACT

The Lot river, a major tributary of the downstream Garonne river, the largest river on the Northern side of the Pyrenees Mountains, was intensively studied in the 1970s. A pioneering program called "Lot Rivière Claire" provided a diagnosis of water quality at the scale of the whole watershed and proposed an ambitious program to manage nutrient pollution and eutrophication largely caused by urban wastewater releases. Later on, the implementation of European directives from 1991 to 2000 resulted in the nearly complete treatment of point sources of pollution in spite of a doubling of the basin's population. At the outlet of the Lot river, ammonium and phosphate contamination which respectively peaked to 1 mg N-NH4 L-1 and 0.3 mg P-PO4 L-1 in the 1980s returned to much lower levels in recent years (0.06 mg N-NH4 L-1 and 0.02 mg P-PO4 L-1), a reduction by a factor 15. However, during this time, nitrate contamination has regularly increased since the 1980s, from 0.5 to 1.2 mg N-NO3 L-1 in average, owing to the intensification of agriculture and livestock farming. Application of the Riverstrahler model allowed us to simulate the water quality of the Lot drainage network for the 2002-2014 period. We showed that, with respect to algal requirements, phosphorus and silica are well balanced, but nitrogen remains largely in excess over phosphorus and silica. This imbalance can be problematic for the ecological status of the water bodies. Using the model, for simulating various scenarios of watershed management, we showed that improvement of urban wastewater treatment would not result in any significant change in the river's water quality. Even though arable land occupies a rather limited fraction of the watershed area, only the adoption of better farming practices or more radical changes in the agro-food system could reverse the trend of increasing nitrate contamination.


Subject(s)
Nitrates/analysis , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Agriculture , Eutrophication , France , Fresh Water , Rivers , Wastewater , Water Pollutants, Chemical/chemistry , Water Quality
11.
J Environ Manage ; 205: 18-28, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28963875

ABSTRACT

The sustainability of phosphorus (P) fertilization in cropping systems is an important issue because P resources on earth are limited and excess P in soils can lead to ecological damage such as eutrophication. Worldwide, there is an increasing interest in organic farming (OF) due to its good environmental performance. However, organic cropping systems are suspected of generating negative P budgets, which questions their ability to provide sustainable P management. The design of agricultural systems at a broader scale also largely influences the shape of the P cycle and the possibility of its recycling to cropland. In this context, the aim of this study was to assess the relative influence of (i) OF versus conventional farming (CF) practices and (ii) the structure of agro-food systems at the regional scale, on P cycling and availability on cropland. For this purpose, we examined P budgets and soil P status of 14 organic and conventional cropping systems in commercial farms located in the Paris Basin. Available P was analyzed using two different methods: resin P and Olsen P. The results revealed no significant differences between CF and OF in available P stocks. Phosphorus budgets were always negative and significantly lower in CF systems, indicating that P was mined from soil reserves. In parallel, we estimated P budgets over cropland in all French regions for two distinct periods, 2004-2014 and 1970-1981, and showed that specialized intensive cropping systems in the Paris Basin led to a high, positive P budget in the latter period. However, this trend was reversed in the 2004-2014 period due to a sharp reduction of the mineral fertilizer application rate. The shift from very high P budgets to much lower and sometimes negative P budgets would not be a threat for agriculture due to the current high level of Olsen P in these regions, which was consistent with our measurements at the plot scale. Overall, these results suggest that OF would not lead to more P deficiency than CF. Instead, they emphasize that sustainable P management not only depends on farmers' choices but mainly on the structure and specialization of agro-food systems.


Subject(s)
Farms , Phosphorus , Agriculture , Crops, Agricultural , Paris
12.
Environ Sci Pollut Res Int ; 25(24): 23373-23382, 2018 Aug.
Article in English | MEDLINE | ID: mdl-27146537

ABSTRACT

Organic market gardening is often promoted by urban municipalities as a way to resource part of the food supply, creating new social links and protecting groundwater resources. The agronomical and environmental performance of six commercial organic market gardening farms supplying vegetables in Paris were evaluated and compared with other vegetable production systems. When expressed in terms of protein production, the yield of these systems appears rather low compared with the productive capacity of open-field organic cropping systems where vegetable production is inserted into rotation with other crops. Moreover, the requirement of producing infiltrated water meeting the drinking water standards seriously limits the allowable rate of fertilisation, thus limiting production. The data reported herein show that to supply the amount of vegetables required by the Paris agglomeration (12 million inhabitants) only by organic market gardening, 160,000-205,000 ha, i.e. 28-36 % of the agricultural area of the surrounding Ile-de-France region, would be required. We conclude that organic market gardening is only one of several other farming systems which can contribute to a re-localised supply of vegetables to large cities.


Subject(s)
Food Supply/statistics & numerical data , Organic Agriculture/statistics & numerical data , Vegetables , Agricultural Irrigation , Farms/statistics & numerical data , Food Supply/methods , France , Paris
13.
Environ Sci Pollut Res Int ; 25(24): 23515-23528, 2018 Aug.
Article in English | MEDLINE | ID: mdl-27613626

ABSTRACT

The lower Seine River is severely affected by the release of the treated wastewater from the 12 million inhabitants of the Paris agglomeration. Whereas urban effluents were the major source of phosphorus pollution in the late 1980s, the ban on polyphosphates from detergents in 1991 considerably reduced the phosphorus (P) loading to the Seine River and was followed in 2000 by the implementation of phosphorus treatment in the largest wastewater treatment plant of Paris conurbation (Seine Aval). Phosphorus discharged to the rivers from domestic wastewater was reduced by 80 %, significantly decreasing phytoplankton biomass in the large branches of the Seine River. Considering that phosphorus treatment (the use of ferric salts in the P treatment line) might change the adsorption of ortho-phosphates on suspended matter, we experimentally studied again their sorption processes in these new conditions. We found parameters of the Langmuir equation (Pac = 0.003 mgP mgSS-1; Kps = 0.04 mgP L-1) that significantly differed from the values previously considered for modeling of the whole Seine, especially for Kps (Pac = 0.0055 mgP mgSS-1; Kps = 0.7 mgP L-1). Using the Seneque-Rivertrahler modeling approach, we showed a better agreement between P observations and simulations with the new P sorption parameters, with slight effect on the simulation of the development of phytoplankton in the water column.


Subject(s)
Phosphorus/analysis , Phytoplankton/growth & development , Rivers , Wastewater/chemistry , Biomass , Environmental Monitoring , Eutrophication , France , Geologic Sediments/chemistry , Models, Theoretical , Paris , Phosphates/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis
14.
Sci Total Environ ; 586: 42-55, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28208096

ABSTRACT

The aim of the study was to develop a conceptual framework to analyze the agro-food system of French agricultural regions from the angle of N, P and C circulation through five major compartments (cropland, grassland, livestock biomass, local population and potential environmental losses). To reach that goal we extended the Generalized Representation of Agro-Food System approach to P and C and applied it to French regions. Using this methodology we analyzed the relation between production pattern and N surplus, P budget, and efficient organic carbon inputs (OCeff), assuming these three indicators to be good proxies for (i) N losses to waterbodies and the atmosphere, (ii) P accumulation or depletion in soils, and (iii) potential additional C sequestration in soils, respectively. A typology was then established, allowing for comparison between five types of agricultural systems. This made it possible to highlight that intensive specialized agricultural systems generate high environmental losses and resource consumption per unit of agricultural surface and present a very open nutrient cycle due to substantial trade flows. Conversely, mixed crop and livestock farming and extensive cropping systems had more limited N and P consumption and led to lower potential water and air contamination. However, this trend was reversed when expressing resource consumption and N and P budget on a pro rata basis of vegetal and animal product unit, reflecting the better nutrient use efficiency of specialized regions in their respective field of specialization. This study demonstrates the systemic impact of production patterns on environmental and agronomic performances at the regional scale.

15.
Environ Monit Assess ; 188(9): 517, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27523602

ABSTRACT

Many studies have been published on the use of models to assess water quality through faecal contamination levels. However, the vast majority of this work has been conducted in developed countries and similar studies from developing countries in tropical regions are lacking. Here, we used the Seneque/Riverstrahler model to investigate the dynamics and seasonal distribution of total coliforms (TC), an indicator of faecal contamination, in the Red River (Northern Vietnam) and its upstream tributaries. The results of the model showed that, in general, the overall correlations between the simulated and observed values of TC follow a 1:1 relationship at all examined stations. They also showed that TC numbers were affected by both land use in terms of human and livestock populations and by hydrology (river discharge). We also developed a possible scenario based on the predicted changes in future demographics and land use in the Red River system for the 2050 horizon. Interestingly, the results showed only a limited increase of TC numbers compared with the present situation at all stations, especially in the upstream Vu Quang station and in the urban Ha Noi station. This is probably due to the dominance of diffuse sources of contamination relative to point sources. The model is to our knowledge one of the first mechanistic models able to simulate spatial and seasonal variations of microbial contamination (TC numbers) in the whole drainage network of a large regional river basin covering both urban and rural areas of a developing country.


Subject(s)
Environmental Monitoring/methods , Feces/microbiology , Models, Theoretical , Rivers/microbiology , Animals , Enterobacteriaceae , Humans , Livestock , Population Density , Seasons , Vietnam , Water Pollutants , Water Quality
16.
Sci Total Environ ; 573: 420-432, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27572535

ABSTRACT

Nitrogen (N) retention sensu lato refers to all processes preventing new reactive nitrogen brought into watersheds through agricultural or industrial activities to be exported by river systems to the sea. Although such processes protect marine systems from the threat of eutrophication and anoxia, they raise other environmental issues, including the acidification of soils, the emission of ammonia and greenhouse gases, and the pollution of aquifers. Despite these implications, the factors involved in N retention are still poorly controlled, particularly in arid and semi-arid systems. The present study evaluates the N fluxes of 38 catchments in the Iberian Peninsula with contrasting climatic characteristics (temperate and Mediterranean), land uses, and water management practices. This diversity allows addressing the contribution of physical and socioecological factors in N retention, and more specifically, exploring the relation between N retention and water regulation. We hypothesise that the extreme flow regulation implemented in the Mediterranean enhances the high N retention values associated with arid and semi-arid regions. The results show that reservoirs and irrigation channels account for >50% of the variability in N retention values, and above a certain regulation threshold, N retention peaks to values >85-90%. Future climate projections forecast a decrease in rainfall and an increase in agricultural intensification and irrigation practices in many world regions, most notably in arid and semi-arid areas. Increased water demand will likely lead to greater flow regulation, and the situation in many areas may resemble that of Iberian Mediterranean catchments. High N retention and the associated environmental risks must therefore be considered and adequately addressed.

17.
Philos Trans R Soc Lond B Biol Sci ; 368(1621): 20130123, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23713121

ABSTRACT

The nitrogen cycle of pre-industrial ecosystems has long been remarkably closed, in spite of the high mobility of this element in the atmosphere and hydrosphere. Inter-regional and international commercial exchanges of agricultural goods, which considerably increased after the generalization of the use of synthetic nitrogen fertilizers, introduced an additional type of nitrogen mobility, which nowadays rivals the atmospheric and hydrological fluxes in intensity, and causes their enhancement at the local, regional and global scales. Eighty-five per cent of the net anthropogenic input of reactive nitrogen occurs on only 43 per cent of the land area. Modern agriculture based on the use of synthetic fertilizers and the decoupling of crop and animal production is responsible for the largest part of anthropogenic losses of reactive nitrogen to the environment. In terms of levers for better managing the nitrogen cascade, beyond technical improvement of agricultural practices tending to increase nitrogen use efficiency, or environmental engineering management measures to increase nitrogen sinks in the landscape, the need to better localize crop production and livestock breeding, on the one hand, and agriculture and food demand on the other hand, is put forward as a condition to being able to supply food to human populations while preserving environmental resources.


Subject(s)
Agriculture/methods , Fertilizers/analysis , Models, Theoretical , Nitrogen Cycle , Reactive Nitrogen Species/analysis , Seawater/chemistry , Soil/chemistry
18.
Sci Total Environ ; 430: 280-90, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22682989

ABSTRACT

Ponds were ubiquitous features of the traditional rural waterscape in the Seine watershed, as shown by the 18th century Cassini map. Using the result of a water quality survey at the entrance and the outlet of a small pond receiving agricultural drainage water, the Seneque/Riverstrahler biogeochemical model was shown to accurately simulate the observed 30% reduction in nitrogen fluxes crossing this pond. The model was then used to simulate the effect of various scenarios of pond restoration (inspired by their 18th century geographical distribution as revealed by the Cassini map) on surface water nitrate contamination at different spatial scales. In regions with an impermeable lithological substrate, the restoration of ponds at a density of 5% of the agricultural area would reduce the riverine nitrogen export by up to 25% on an annual basis. It is suggested that such waterscape management, used in conjunction with more preventive measures, can be a useful means to reduce nitrate contamination of water resources.


Subject(s)
Conservation of Natural Resources , Nitrates/analysis , Ponds/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , France , Models, Biological , Nitrogen/analysis , Water Quality
19.
Sci Total Environ ; 409(11): 2179-91, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21439607

ABSTRACT

Nutrient reduction measures have been already taken by wealthier countries to decrease nutrient loads to coastal waters, in most cases however, prior to having properly assessed their ecological effectiveness and their economic costs. In this paper we describe an original integrated impact assessment methodology to estimate the direct cost and the ecological performance of realistic nutrient reduction options to be applied in the Southern North Sea watershed to decrease eutrophication, visible as Phaeocystis blooms and foam deposits on the beaches. The mathematical tool couples the idealized biogeochemical GIS-based model of the river system (SENEQUE-RIVERSTRAHLER) implemented in the Eastern Channel/Southern North Sea watershed to the biogeochemical MIRO model describing Phaeocystis blooms in the marine domain. Model simulations explore how nutrient reduction options regarding diffuse and/or point sources in the watershed would affect the Phaeocystis colony spreading in the coastal area. The reference and prospective simulations are performed for the year 2000 characterized by mean meteorological conditions, and nutrient reduction scenarios include and compare upgrading of wastewater treatment plants and changes in agricultural practices including an idealized shift towards organic farming. A direct cost assessment is performed for each realistic nutrient reduction scenario. Further the reduction obtained for Phaeocystis blooms is assessed by comparison with ecological indicators (bloom magnitude and duration) and the cost for reducing foam events on the beaches is estimated. Uncertainty brought by the added effect of meteorological conditions (rainfall) on coastal eutrophication is discussed. It is concluded that the reduction obtained by implementing realistic environmental measures on the short-term is costly and insufficient to restore well-balanced nutrient conditions in the coastal area while the replacement of conventional agriculture by organic farming might be an option to consider in the nearby future.


Subject(s)
Conservation of Natural Resources/economics , Eutrophication , Haptophyta/growth & development , Waste Management/economics , Water Pollution, Chemical/prevention & control , Agriculture , Conservation of Natural Resources/methods , Costs and Cost Analysis , Geographic Information Systems , Models, Biological , Models, Chemical , Nitrogen/analysis , North Sea , Phosphorus/analysis , Waste Disposal, Fluid/economics , Waste Management/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data
20.
J Environ Qual ; 39(2): 449-59, 2010.
Article in English | MEDLINE | ID: mdl-20176818

ABSTRACT

To investigate bottom sediment denitrification at the scale of the Seine drainage network, a semi-potential denitrification assay was used in which river sediments (and riparian soils) were incubated for a few hours under anaerobic conditions with non limiting nitrate concentrations. This method allowed the nitrous oxide (N(2)O) concentration in the headspace, as well as the nitrate, nitrite, and ammonium concentrations to be determined during incubation. The rates at which nitrate decreased and N(2)O increased were then used to assess the potential denitrification activity and associated N(2)O production in the Seine River Basin. We observed a longitudinal pattern characterized by a significant increase of the potential rate of denitrification from upstream sectors to large downstream rivers (orders 7-8), from approximately 3.3 to 9.1 microg NO(3)(-)-N g(-1) h(-1), respectively, while the N(2)O production rates was the highest both in headwaters and in large order rivers (0.14 and 0.09 N(2)O-N g(-1) h(-1), respectively) and significantly lower in the intermediate sectors (0.01 and 0.03 N(2)O-N g(-1) h(-1)). Consequently, the ratio N(2)O production:NO(3) reduction was found to reach 5% in headstreams, whereas it averaged 1.2% in the rest of the drainage network, an intermediate percentage being found for the riparian soils. Finally, the ignition loss of sediments, together with other redundant variables (particulate organic carbon content: g C 100 g(-1) dry weight [dw], moisture: g water 100 g(-1) dw, sediment size <50 mum: g material size <50 mum 100 g(-1) dw) were found to control these activities. However, the biodegradability of organic matter must be measured to better understand the factor controlling denitrification and its associated N(2)O production.


Subject(s)
Geologic Sediments/analysis , Nitrates/metabolism , Nitrogen/metabolism , Nitrous Oxide/metabolism , Rivers/chemistry , Environmental Monitoring , France , Nitrates/analysis , Nitrous Oxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...