Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445801

ABSTRACT

The brown alga Pelvetia canaliculata is one of the species successfully adapted to intertidal conditions. Inhabiting the high intertidal zone, Pelvetia spends most of its life exposed to air, where it is subjected to desiccation, light, and temperature stresses. However, the physiological and biochemical mechanisms allowing this alga to tolerate such extreme conditions are still largely unknown. The objective of our study is to compare the biochemical composition of Pelvetia during the different phases of the tidal cycle. To our knowledge, this study is the first attempt to draft a detailed biochemical network underneath the complex physiological processes, conferring the successful survival of this organism in the harsh conditions of the high intertidal zone of the polar seas. We considered the tide-induced changes in relative water content, stress markers, titratable acidity, pigment, and phlorotannin content, as well as the low molecular weight metabolite profiles (GC-MS-based approach) in Pelvetia thalli. Thallus desiccation was not accompanied by considerable increase in reactive oxygen species content. Metabolic adjustment of P. canaliculata to emersion included accumulation of soluble carbohydrates, various phenolic compounds, including intracellular phlorotannins, and fatty acids. Changes in titratable acidity accompanied by the oscillations of citric acid content imply that some processes related to the crassulacean acid metabolism (CAM) may be involved in Pelvetia adaptation to the tidal cycle.


Subject(s)
Phaeophyceae , Phaeophyceae/chemistry , Gas Chromatography-Mass Spectrometry , Reactive Oxygen Species/metabolism , Carbohydrates
2.
ChemSusChem ; 15(9): e202101062, 2022 May 06.
Article in English | MEDLINE | ID: mdl-34129279

ABSTRACT

Earth is flooded with plastics and the need for sustainable recycling strategies for polymers has become increasingly urgent. Enzyme-based hydrolysis of post-consumer plastic is an emerging strategy for closed-loop recycling of polyethylene terephthalate (PET). The polyester hydrolase PHL7, isolated from a compost metagenome, completely hydrolyzes amorphous PET films, releasing 91 mg of terephthalic acid per hour and mg of enzyme. Vertical scanning interferometry shows degradation rates of the PET film of 6.8 µm h-1 . Structural analysis indicates the importance of leucine at position 210 for the extraordinarily high PET-hydrolyzing activity of PHL7. Within 24 h, 0.6 mgenzyme gPET -1 completely degrades post-consumer thermoform PET packaging in an aqueous buffer at 70 °C without any energy-intensive pretreatments. Terephthalic acid recovered from the enzymatic hydrolysate is then used to synthesize virgin PET, demonstrating the potential of polyester hydrolases as catalysts in sustainable PET recycling processes with a low carbon footprint.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Carbon Footprint , Hydrolases/metabolism , Metagenome , Plastics/chemistry , Polyethylene Terephthalates/chemistry , Recycling
4.
J Chromatogr A ; 1645: 462095, 2021 May 24.
Article in English | MEDLINE | ID: mdl-33857675

ABSTRACT

Liquid chromatography coupled to a triple quadrupole and, alternatively, to an ultrahigh-resolution quadrupole time-of-flight (UHR-QqTOF) mass spectrometers was used to collect qualitative and quantitative information from incubations of the anti-hepatitis C drug simeprevir with human and rat liver microsomes, respectively, supplemented with NADPH and glutathione. For this, different chromatographic methods using two different chromatographic columns, Kinetex® 2.6 µm C18 (50 × 3 mm) and Atlantis T3 (100 Å, 3 µm, 4.6 mm × 150 mm), have been employed. For determination and structural characterization of the reactive metabolites, we used information obtained from high-resolution mass spectrometry, namely accurate mass data to calculate the elemental composition, accurate MS/MS fragmentation patterns for confirmation of structural proposals, and the high mass spectral resolution to eliminate false-positive peaks. In this study, the use of high-resolution mass spectrometry (HR-MS) enabled the identification of 19 simeprevir metabolites generated by O- respectively N-demethylation, oxidation, dehydrogenation, hydrolysis, and formation of glutathione conjugates. The in silico study provides insights into the sites of simeprevir most amenable to reactions involving cytochrome P450. The developed methods have been successfully applied to analyze simeprevir and its metabolites simultaneously; based on this data, potential metabolic pathways of simeprevir are discussed. In general, the obtained results demonstrate that simeprevir is susceptible to form reactive simeprevir-glutathione adducts and cyclopropansulfonamide, which may explain the implication of simeprevir in idiosyncratic adverse drug reactions (IADRs) or hepatotoxicity.


Subject(s)
Chromatography, Liquid/methods , Glutathione/metabolism , Microsomes, Liver/metabolism , Simeprevir , Tandem Mass Spectrometry/methods , Animals , Glutathione/analysis , Humans , Rats , Simeprevir/analysis , Simeprevir/chemistry , Simeprevir/metabolism
5.
Sci Rep ; 11(1): 2948, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536450

ABSTRACT

Mass spectrometry coupled to low-temperature plasma ionization (LTPI) allows for immediate and easy analysis of compounds from the surface of a sample at ambient conditions. The efficiency of this process, however, strongly depends on the successful desorption of the analyte from the surface to the gas phase. Whilst conventional sample heating can improve analyte desorption, heating is not desirable with respect to the stability of thermally labile analytes. In this study using aromatic amines as model compounds, we demonstrate that (1) surface acoustic wave nebulization (SAWN) can significantly improve compound desorption for LTPI without heating the sample. Furthermore, (2) SAWN-assisted LTPI shows a response enhancement up to a factor of 8 for polar compounds such as aminophenols and phenylenediamines suggesting a paradigm shift in the ionization mechanism. Additional assets of the new technique demonstrated here are (3) a reduced analyte selectivity (the interquartile range of the response decreased by a factor of 7)-a significant benefit in non-targeted analysis of complex samples-and (4) the possibility for automated online monitoring using an autosampler. Finally, (5) the small size of the microfluidic SAWN-chip enables the implementation of the method into miniaturized, mobile LTPI probes.

6.
Metabolites ; 10(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933101

ABSTRACT

Accumulation of biologically active metabolites is a specific feature of plant biochemistry, directing the use of plants in numerous applications in the pharmaceutical and food industries. Among these substances, the plethora of phenolic compounds has attracted particular interest among researchers. Here, we report on new findings in phlorotannin research, a large group of multifunctional phenolic substances, produced in brown algae. Comprehensive LC-MS profiling of three algal species allowed us to depict the complex pattern of this structurally diverse compound group across different tissues and subcellular compartments. We compiled more than 30 different phlorotannin series in one sample and used accurate mass spectrometry to assign tentative structures to the observed ions based on the confirmed sum formulas. From that, we found that acetylation, hydroxylation, and oxidation are likely to be the most common in vivo modifications to phlorotannins. Using an alternative data mining strategy to cope with extensive coelution and structural isomers, we quantitatively compared the intensity of different phlorotannin series in species, tissues, and subcellular compartments to learn more about their physiological functions. The structure and intra-thallus profiles of cell wall-bound phlorotannins were studied here for the first time. We suggest that one of the major dibenzodioxin-type phlorotannin series may exclusively target integration into the cell wall of fucoid algae.

7.
Methods Protoc ; 3(2)2020 May 04.
Article in English | MEDLINE | ID: mdl-32375407

ABSTRACT

Fatty acids (FAs) represent an important class of metabolites, impacting on membrane building blocks and signaling compounds in cellular regulatory networks. In nature, prokaryotes are characterized with the most impressing FA structural diversity and the highest relative content of free fatty acids (FFAs). In this context, nitrogen-fixing bacteria (order Rhizobiales), the symbionts of legumes, are particularly interesting. Indeed, the FA profiles influence the structure of rhizobial nodulation factors, required for successful infection of plant root. Although FA patterns can be assessed by gas chromatography-(GC-) and liquid chromatography-mass spectrometry (LC-MS), sample preparation for these methods is time-consuming and quantification suffers from compromised sensitivity, low stability of derivatives and artifacts. In contrast, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) represents an excellent platform for high-efficient metabolite fingerprinting, also applicable to FFAs. Therefore, here we propose a simple and straightforward protocol for high-throughput relative quantification of FFAs in rhizobia by combination of Langmuir technology and MALDI-TOF-MS featuring a high sensitivity, accuracy and precision of quantification. We describe a step-by-step procedure comprising rhizobia culturing, pre-cleaning, extraction, sample preparation, mass spectrometric analysis, data processing and post-processing. As a case study, a comparison of the FFA metabolomes of two rhizobia species-Rhizobium leguminosarum and Sinorhizobium meliloti, demonstrates the analytical potential of the protocol.

8.
Molecules ; 23(11)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30453519

ABSTRACT

The great research interest in the quantification of reactive carbonyl compounds (RCCs), such as methylglyoxal (MGO) in biological and environmental samples, is reflected by the fact that several publications have described specific strategies to perform this task. Thus, many reagents have also been reported for the derivatization of RCCs to effectively detect and quantify the resulting compounds using sensitive techniques such as liquid chromatography coupled with mass spectrometry (LC-MS). However, the choice of the derivatization protocol is not always clear, and a comparative evaluation is not feasible because detection limits from separate reports and determined with different instruments are hardly comparable. Consequently, for a systematic comparison, we tested 21 agents in one experimental setup for derivatization of RCCs prior to LC-MS analysis. This consisted of seven commonly employed reagents and 14 similar reagents, three of which were designed and synthesized by us. All reagents were probed for analytical responsiveness of the derivatives and stability of the reaction mixtures. The results showed that derivatives of 4-methoxyphenylenediamine and 3-methoxyphenylhydrazine-reported here for the first time for derivatization of RCCs-provided a particularly high responsiveness with ESI-MS detection. We applied the protocol to investigate MGO contamination of laboratory water and show successful quantification in a lipoxidation experiment. In summary, our results provide valuable information for scientists in establishing accurate analysis of RCCs.


Subject(s)
Chromatography, Liquid/methods , Laboratories/standards , Pyruvaldehyde/analysis , Pyruvaldehyde/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Water Pollutants, Chemical/analysis , Limit of Detection
9.
Int J Anal Chem ; 2018: 5647536, 2018.
Article in English | MEDLINE | ID: mdl-30723503

ABSTRACT

Modern technical evolution made mass spectrometry (MS) an absolute must for analytical chemistry in terms of application range, detection limits and speed. When it comes to mass spectrometric detection, one of the critical steps is to ionize the analyte and bring it into the gas phase. Several ionization techniques were developed for this purpose among which electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are two of the most frequently applied atmospheric pressure methods to ionize target compounds from liquid matrices or solutions. Moreover, recent efforts in the emerging field of "ambient" MS enable the applicability of newly developed atmospheric pressure techniques to solid matrices, greatly simplifying the analysis of samples with MS and anticipating, to ease the required or even leave out any sample preparation and enable analysis at ambient conditions, outside the instrument itself. These developments greatly extend the range of applications of modern mass spectrometry (MS). Ambient methods comprise many techniques; a particular prominent group is, however, the plasma-based methods. Although ambient MS is a rather new field of research, the interest in further developing the corresponding techniques and enhancing their performance is very strong due to their simplicity and often low cost of manufacturing. A precondition for improving the performance of such ion sources is a profound understanding how ionization works and which parameters determine signal response. Therefore, we review relevant compound characteristics for ionization with the two traditional methods ESI and APCI and compare those with one of the most frequently employed representatives of the plasma-based methods, i.e., low temperature plasma ionization. We present a detailed analysis in which compound characteristics are most beneficial for the response of aromatic nitrogen-containing compounds with these three methods and provide evidence that desorption characteristics appear to have the main common, general impact on signal response. In conclusion, our report provides a very useful resource to the optimization of instrumental conditions with respect to most important requirements of the three ionization techniques and, at the same time, for future developments in the field of ambient ionization.

10.
FEBS J ; 284(24): 4314-4327, 2017 12.
Article in English | MEDLINE | ID: mdl-29076625

ABSTRACT

Heme d1 is a modified tetrapyrrole playing an important role in denitrification by acting as the catalytically essential cofactor in the cytochrome cd1 nitrite reductase of many denitrifying bacteria. In the course of heme d1 biosynthesis, the two propionate side chains on pyrrole rings A and B of the intermediate 12,18-didecarboxysiroheme are removed from the tetrapyrrole macrocycle. In the final heme d1 molecule, the propionate groups are replaced by two keto functions. Although it was speculated that the Radical S-adenosyl-l-methionine (SAM) enzyme NirJ might be responsible for the removal of the propionate groups and introduction of the keto functions, this has not been shown experimentally, so far. Here, we demonstrate that NirJ is a Radical SAM enzyme carrying two iron-sulfur clusters. While the N-terminal [4Fe-4S] cluster is essential for the initial SAM cleavage reaction, it is not required for substrate binding. NirJ tightly binds its substrate 12,18-didecarboxysiroheme and, thus, can be purified in complex with the substrate. By using the purified NirJ/substrate complex in an in vitro enzyme activity assay, we show that NirJ indeed catalyzes the removal of the two propionate side chains under simultaneous SAM cleavage. However, under the reaction conditions employed, no keto group formation is observed indicating that an additional cofactor or enzyme is needed for this reaction.


Subject(s)
Bacterial Proteins/metabolism , Heme/analogs & derivatives , Iron-Sulfur Proteins/metabolism , Nitrate Reductase/metabolism , Propionates/metabolism , Rhodobacteraceae/enzymology , S-Adenosylmethionine/metabolism , Amino Acid Motifs , Amino Acid Sequence , Bacterial Proteins/isolation & purification , Catalysis , Chromatography, High Pressure Liquid , Dithionite/pharmacology , Heme/biosynthesis , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/isolation & purification , Models, Chemical , Molecular Structure , Mutagenesis, Site-Directed , Nitrate Reductase/genetics , Nitrate Reductase/isolation & purification , Recombinant Fusion Proteins/metabolism , Reducing Agents/pharmacology , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity , Substrate Specificity , Tetrapyrroles/metabolism
12.
Nature ; 543(7643): 78-82, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28225763

ABSTRACT

Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilization of methane through anaerobic methane oxidation. The enzyme uses an ancillary factor called coenzyme F430, a nickel-containing modified tetrapyrrole that promotes catalysis through a methyl radical/Ni(ii)-thiolate intermediate. However, it is unclear how coenzyme F430 is synthesized from the common primogenitor uroporphyrinogen iii, incorporating 11 steric centres into the macrocycle, although the pathway must involve chelation, amidation, macrocyclic ring reduction, lactamization and carbocyclic ring formation. Here we identify the proteins that catalyse the biosynthesis of coenzyme F430 from sirohydrochlorin, termed CfbA-CfbE, and demonstrate their activity. The research completes our understanding of how the repertoire of tetrapyrrole-based pigments are constructed, permitting the development of recombinant systems to use these metalloprosthetic groups more widely.


Subject(s)
Biocatalysis , Biosynthetic Pathways , Coenzymes/biosynthesis , Metalloporphyrins/metabolism , Methane/biosynthesis , Methanosarcina barkeri/enzymology , Tetrapyrroles/biosynthesis , Amidohydrolases/genetics , Amidohydrolases/metabolism , Biosynthetic Pathways/genetics , Coenzymes/chemistry , Lyases/genetics , Lyases/metabolism , Metalloporphyrins/chemistry , Methane/analogs & derivatives , Methane/metabolism , Methanosarcina barkeri/genetics , Methanosarcina barkeri/metabolism , Multigene Family , Nickel/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Tetrapyrroles/chemistry , Uroporphyrins/chemistry , Uroporphyrins/metabolism
13.
Biotechnol J ; 7(12): 1517-21, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22623363

ABSTRACT

A fluorimetric assay for the fast determination of the activity of polyester-hydrolyzing enzymes in a large number of samples has been developed. Terephthalic acid (TPA) is a main product of the enzymatic hydrolysis of polyethylene terephthalate (PET), a synthetic polyester. Terephthalate has been quantified following its conversion to the fluorescent 2-hydroxyterephthalate by an iron autoxidation-mediated generation of free hydroxyl radicals. The assay proved to be robust at different buffer concentrations, reaction times, pH values, and in the presence of proteins. A validation of the assay was performed by analyzing TPA formation from PET films and nanoparticles catalyzed by a polyester hydrolase from Thermobifida fusca KW3 in a 96-well microplate format. The results showed a close correlation (R(2) = 0.99) with those obtained by a considerably more tedious and time-consuming HPLC method, suggesting the aptness of the fluorimetric assay for a high-throughput screening for polyester hydrolases. The method described in this paper will facilitate the detection and development of biocatalysts for the modification and degradation of synthetic polymers. The fluorimetric assay can be used to quantify the amount of TPA obtained as the final degradation product of the enzymatic hydrolysis of PET. In a microplate format, this assay can be applied for the high-throughput screening of polyester hydrolases.


Subject(s)
Biotechnology/methods , High-Throughput Screening Assays/methods , Hydrolases/metabolism , Polyethylene Terephthalates/chemistry , Spectrometry, Fluorescence/methods , Actinomycetales/enzymology , Bacterial Proteins/metabolism , Bioreactors , Phthalic Acids/analysis , Phthalic Acids/chemistry , Phthalic Acids/metabolism , Polyethylene Terephthalates/metabolism
14.
Adv Biochem Eng Biotechnol ; 125: 97-120, 2011.
Article in English | MEDLINE | ID: mdl-21076908

ABSTRACT

The functionalization of synthetic polymers such as poly(ethylene terephthalate) to improve their hydrophilicity can be achieved biocatalytically using hydrolytic enzymes. A number of cutinases, lipases, and esterases active on polyethylene terephthalate have been identified and characterized. Enzymes from Fusarium solani, Thermomyces insolens, T. lanuginosus, Aspergillus oryzae, Pseudomonas mendocina, and Thermobifida fusca have been studied in detail. Thermostable biocatalysts hydrolyzing poly(ethylene terephthalate) are promising candidates for the further optimization of suitable biofunctionalization processes for textile finishing, technical, and biomedical applications.


Subject(s)
Bacterial Proteins/chemistry , Biological Products/chemistry , Carboxylic Ester Hydrolases/chemistry , Esterases/chemistry , Hydrolases/chemistry , Enzyme Activation , Enzyme Stability , Hydrolysis , Substrate Specificity
15.
Appl Microbiol Biotechnol ; 87(5): 1753-64, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20467738

ABSTRACT

We have identified a carboxylesterase produced in liquid cultures of the thermophilic actinomycete Thermobifida fusca KW3 that were supplemented with poly(ethylene terephthalate) fibers. The enzyme hydrolyzed highly hydrophobic, synthetic cyclic poly(ethylene terephthalate) trimers with an optimal activity at 60 degrees C and a pH of 6. V (max) and K (m) values for the hydrolysis were 9.3 micromol(-1) min(-1) mg(-1) and 0.5 mM, respectively. The esterase showed high specificity towards short and middle chain-length fatty acyl esters of p-nitrophenol. The enzyme retained 37% of its activity after 96 h of incubation at 50 degrees C and a pH of 8. Enzyme inhibition studies and analysis of substitution mutants of the carboxylesterase revealed the typical catalytic mechanism of a serine hydrolase with a catalytic triad composed of serine, glutamic acid, and histidine.


Subject(s)
Actinomycetales/enzymology , Carboxylesterase/metabolism , Polyethylene Glycols/metabolism , Carboxylesterase/chemistry , Carboxylesterase/genetics , Carboxylesterase/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enzyme Stability , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Models, Molecular , Molecular Sequence Data , Polyethylene Terephthalates , Protein Structure, Tertiary , Sequence Analysis, DNA , Substrate Specificity , Temperature
16.
J Biotechnol ; 146(3): 100-4, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20156495

ABSTRACT

The gram-positive thermophilic actinomycete Thermobifida fusca KW3 secretes a highly hydrophobic carboxylesterase (TfCa) that is able to hydrolyze poly(ethylene terephthalate). TfCa was produced in the Escherichia coli strain BL21(DE3) as a fusion protein consisting of a pelB leader sequence to ensure periplasmic localization of the protein and a His(6) tag for use in its purification. To enhance the recombinant enzyme yield, the tfca gene from T. fusca KW3 was successfully optimized for codon usage in E. coli. In addition, the gene expression induction conditions were optimized and the temperature for cell cultivation was lowered to reduce inclusion body formation. The optimized codons and expression conditions yielded 4500-fold higher TfCa activity than the wild-type strain. Using a pH-controlled bioreactor for cultivation, a TfCa protein concentration of 41.6mg/L was achieved.


Subject(s)
Actinomycetales/enzymology , Carboxylesterase/chemistry , Carboxylesterase/metabolism , Escherichia coli/physiology , Genetic Enhancement/methods , Polyethylene Glycols/chemistry , Protein Engineering/methods , Recombinant Proteins/metabolism , Actinomycetales/genetics , Carboxylesterase/genetics , Enzyme Activation , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Polyethylene Terephthalates , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...