Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pain Rep ; 7(6): e1047, 2022.
Article in English | MEDLINE | ID: mdl-36398199

ABSTRACT

Unlike conventional dorsal spinal cord stimulation (SCS)-which uses single pulses at a fixed rate-burst SCS uses a fixed-rate, five-pulse stimuli cluster as a treatment for chronic pain; mechanistic explanations suggest burst SCS differentially modulate the medial and lateral pain pathways vs conventional SCS. Neural activation differences between burst and conventional SCS are quantifiable with the spinal-evoked compound action potential (ECAP), an electrical measure of synchronous neural activation. Methods: We implanted 7 sheep with a dorsal stimulation lead at T9/T10, a dorsal ECAP sensing lead at T6/T7, and a lead also at T9/T10 but adjacent to the anterolateral system (ALS). Both burst and conventional SCS with stimulation amplitudes up to the visual motor threshold (vMT) were delivered to 3 different dorsal spinal locations, and ECAP thresholds (ECAPTs) were calculated for all combinations. Then, changes in ALS activation were assessed with both types of SCS. Results: Evoked compound action potential thresholds and vMTs were significantly higher (P < 0.05) with conventional vs burst SCS, with no statistical difference (P > 0.05) among stimulation sites. However, the vMT-ECAPT window (a proxy for the useable therapeutic dosing range) was significantly wider (P < 0.05) with conventional vs burst SCS. No significant difference (P > 0.05) in ALS activation was noted between conventional and burst SCS. Conclusion: When dosed equivalently, no differentially unique change in ALS activation results with burst SCS vs conventional SCS; in addition, sub-ECAPT burst SCS results in no discernable excitability changes in the neural pathways feeding pain relevant supraspinal sites.

2.
Neuromodulation ; 22(7): 790-798, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31124198

ABSTRACT

BACKGROUND: We determined whether intrathecally delivering the same daily dose of morphine (MS) at a fixed concentration of 25 mg/mL by periodic boluses versus continuous infusion would reduce intrathecal mass (IMs) formation in dogs. METHODS: Adult dogs (hound cross, n = 32) were implanted with intrathecal catheters connected to SynchroMed II infusion pumps. Animals were randomly assigned to receive infusion of 0.48 mL/day of saline or MS dosing (12 mg/day at 25 mg/mL) as boluses: x1 (q24hour), x2 (q12hour), x4 (q6hour), or x8 (q3hour) given at the rate of 1000 µL/hour, or as a continuous infusion (25 mg/mL/20 µL/hour). RESULTS: With IT saline, minimal pathology was noted. In contrast, animals receiving morphine displayed spinally compressing durally derived masses with the maximal cross-sectional area being greatest near the catheter tip. Histopathology showed that IMs consisted of fibroblasts in a collagen (type 1) matrix comprised of newly formed collagen near the catheter and mature collagen on the periphery of the mass. The rank order of median cross-sectional mass area (mm2 ) was: Saline: 0.7 mm2 ; x2: 1.8 mm2 ; x4: 2.7 mm2 ; x1: 2.7 mm2 ; x8: 4.2 mm2 ; Continuous: 8.1 mm2 , with statistical difference from saline being seen with continuous (p < 0.0001) and x8 (p < 0.05). Bench studies with a 2D diffusion chamber confirmed an increase in dye distribution and lower peak concentrations after bolus delivery versus continuous infusion of dye. CONCLUSIONS: Using multiple bolus dosing, IMs were reduced as compared to continuous infusion, suggesting relevance of bolus delivery in yielding reduced intrathecal masses.


Subject(s)
Analgesics, Opioid/administration & dosage , Infusion Pumps, Implantable/trends , Morphine/administration & dosage , Spinal Cord/drug effects , Spinal Cord/pathology , Analgesics, Opioid/adverse effects , Animals , Dogs , Drug Administration Schedule , Female , Infusion Pumps, Implantable/adverse effects , Injections, Spinal/adverse effects , Injections, Spinal/instrumentation , Injections, Spinal/trends , Male , Morphine/adverse effects , Random Allocation
3.
Stereotact Funct Neurosurg ; 89(2): 111-22, 2011.
Article in English | MEDLINE | ID: mdl-21336007

ABSTRACT

BACKGROUND/OBJECTIVES: To better understand the mechanism of action of deep brain stimulation (DBS) for epilepsy and to investigate implantable device features, it is desirable to have a large animal model to evaluate clinical-grade systems. This study assessed the suitability of an ovine model of epilepsy for this purpose. METHODS: Animals were anesthetized for surgery and 1.5 T MRIs collected. Unilateral anterior thalamic DBS leads, hippocampal depth electrodes and catheters were implanted using a frameless stereotactic system. Evoked responses and local field potentials were collected and stored for off-line analysis. RESULTS: Despite limited neuroanatomic information for this species, it was possible to reliably implant leads into the target structures using MR-guided techniques. Stimulation of these regions produced robust evoked potentials within this circuit that were dependent on stimulus location and parameters. High-frequency thalamic DBS produced a clear inhibition of both spontaneous and penicillin-induced ictal activity in the hippocampus which far outlasted the duration of the stimulation. CONCLUSIONS: These preliminary results suggest that the sheep model may be useful for further investigation of DBS for epilepsy. The demonstration of marked suppression of network excitability with high-frequency stimulation supports a potential therapeutic mechanism for this DBS therapy.


Subject(s)
Deep Brain Stimulation/methods , Epilepsy/therapy , Implantable Neurostimulators , Models, Animal , Animals , Deep Brain Stimulation/instrumentation , Epilepsy/physiopathology , Evoked Potentials/drug effects , Evoked Potentials/physiology , Hippocampus/drug effects , Hippocampus/physiology , Magnetic Resonance Imaging , Penicillins/pharmacology , Sheep , Stereotaxic Techniques , Thalamus/drug effects , Thalamus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...