Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine X ; 18: 100496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38779406

ABSTRACT

Vaccination has played a major role in overcoming the COVID-19 pandemic. However, vaccination status can be influenced by demographic and socio-economic factors at individual and area level. In the context of the LINK-VACC project, the Belgian vaccine register for the COVID-19 vaccination campaign was linked at individual level with other registers, notably the COVID-19 laboratory test results and demographic and socio-economic variables from the DEMOBEL database. The present article aims at investigating to which extent COVID-19 vaccination status is associated with area level and/or individual level demographic and socio-economic factors. From a sample of all individuals tested for SARS-CoV-2 (LINK-VACC sample) demographic and socio-economic indicators are derived and their impact on vaccination coverages at an aggregated geographical level (municipality) is quantified. The same indicators are calculated for the full Belgian population, allowing to assess the representativeness of the LINK-VACC sample with respect to the impact of demographic and socio-economic disparities on vaccination uptake. In a second step, hierarchical models are fitted to the individual level LINK-VACC data to disentangle the individual and municipality effects allowing to evaluate the added value of the availability of individual level data in this context. The most important effects observed at the individual level are reflected in the aggregated data at the municipality level. Multilevel analyses show that most of the demographic and socio-economic impacts on vaccination are captured at the individual level, although accounting for area level in individual level analyses improve the overall description.

2.
Article in English | MEDLINE | ID: mdl-38148149

ABSTRACT

BACKGROUND: Recent studies have identified important social inequalities in SARS-CoV-2 infections and related COVID-19 outcomes in the Belgian population. The aim of our study was to investigate the sociodemographic and socioeconomic characteristics associated with the uptake of COVID-19 vaccine in Belgium. METHODS: We conducted a cross-sectional analysis of the uptake of a first COVID-19 vaccine dose among 5 342 110 adults (≥18 years) in Belgium on 31 August 2021. We integrated data from four national data sources: the Belgian vaccine register (vaccination status), COVID-19 Healthdata (laboratory test results), DEMOBEL (sociodemographic/socioeconomic data) and the Common Base Register for HealthCare Actors (individuals licensed to practice a healthcare profession in Belgium). We used multivariable logistic regression analysis for identifying characteristics associated with not having obtained a first COVID-19 vaccine dose in Belgium and for each of its three regions (Flanders, Brussels and Wallonia). RESULTS: During the study period, 10% (536 716/5 342 110) of the Belgian adult population included in our study sample was not vaccinated with a first COVID-19 vaccine dose. A lower COVID-19 vaccine uptake was found among young individuals, men, migrants, single parents, one-person households and disadvantaged socioeconomic groups (with lower levels of income and education, unemployed). Overall, the sociodemographic and socioeconomic disparities were comparable for all regions. CONCLUSIONS: The identification of sociodemographic and socioeconomic disparities in COVID-19 vaccination uptake is critical to develop strategies guaranteeing a more equitable vaccination coverage of the Belgian adult population.

3.
BMC Res Notes ; 16(1): 328, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37951923

ABSTRACT

OBJECTIVE: This study aimed to investigate factors influencing the uptake of first and second COVID-19 booster vaccines among adults in Belgium, particularly age, sex, region of residence and laboratory confirmed COVID-19 infection history. RESULTS: A binomial regression model was used with having received the first or second booster as outcome and age, sex, region of residence and infection history as fixed variables. Among adults, there was generally a higher uptake to receive the first booster among older age groups compared to younger ones. Females, individuals residing in Flanders and those with no previous COVID-19 infection were more likely to receive the first booster. For the second booster, the same age trend was seen as for the first booster. Males, individuals residing in Flanders and those who tested positive for COVID-19 once after first booster were more likely to receive the second booster. Individuals with multiple positive COVID-19 tests before and after primary course or first booster were less likely to receive the subsequent booster dose compared to COVID-naïve individuals. This information could be used to guide future vaccination campaigns during a pandemic and can provide valuable insights into booster uptake patterns.


Subject(s)
COVID-19 Vaccines , COVID-19 , Female , Male , Adult , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Belgium/epidemiology , Biological Transport , Immunization Programs , Vaccination
4.
Euro Surveill ; 28(26)2023 06.
Article in English | MEDLINE | ID: mdl-37382885

ABSTRACT

BackgroundThe Belgian COVID-19 vaccination campaign aimed to reduce disease spread and severity.AimWe estimated SARS-CoV-2 variant-specific vaccine effectiveness against symptomatic infection (VEi) and hospitalisation (VEh), given time since vaccination and prior infection.MethodsNationwide healthcare records from July 2021 to May 2022 on testing and vaccination were combined with a clinical hospital survey. We used a test-negative design and proportional hazard regression to estimate VEi and VEh, controlling for prior infection, time since vaccination, age, sex, residence and calendar week of sampling.ResultsWe included 1,932,546 symptomatic individuals, of whom 734,115 tested positive. VEi against Delta waned from an initial estimate of 80% (95% confidence interval (CI): 80-81) to 55% (95% CI: 54-55) 100-150 days after the primary vaccination course. Booster vaccination increased initial VEi to 85% (95% CI: 84-85). Against Omicron, an initial VEi of 33% (95% CI: 30-36) waned to 17% (95% CI: 15-18), while booster vaccination increased VEi to 50% (95% CI: 49-50), which waned to 20% (95% CI: 19-21) 100-150 days after vaccination. Initial VEh for booster vaccination decreased from 96% (95% CI: 95-96) against Delta to 87% (95% CI: 86-89) against Omicron. VEh against Omicron waned to 73% (95% CI: 71-75) 100-150 days after booster vaccination. While recent prior infections conferred higher protection, infections occurring before 2021 remained associated with significant risk reduction against symptomatic infection. Vaccination and prior infection outperformed vaccination or prior infection only.ConclusionWe report waning and a significant decrease in VEi and VEh from Delta to Omicron-dominant periods. Booster vaccination and prior infection attenuated these effects.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Vaccine Efficacy , Hospitalization
5.
Vaccine ; 41(20): 3292-3300, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37085456

ABSTRACT

OBJECTIVES: Vaccine effectiveness against transmission (VET) of SARS-CoV-2-infection can be estimated from secondary attack rates observed during contact tracing. We estimated VET, the vaccine-effect on infectiousness of the index case and susceptibility of the high-risk exposure contact (HREC). METHODS: We fitted RT-PCR-test results from HREC to immunity status (vaccine schedule, prior infection, time since last immunity-conferring event), age, sex, calendar week of sampling, household, background positivity rate and dominant VOC using a multilevel Bayesian regression-model. We included Belgian data collected between January 2021 and January 2022. RESULTS: For primary BNT162b2-vaccination we estimated initial VET at 96% (95%CI 95-97) against Alpha, 87% (95%CI 84-88) against Delta and 31% (95%CI 25-37) against Omicron. Initial VET of booster-vaccination (mRNA primary and booster-vaccination) was 87% (95%CI 86-89) against Delta and 68% (95%CI 65-70) against Omicron. The VET-estimate against Delta and Omicron decreased to 71% (95%CI 64-78) and 55% (95%CI 46-62) respectively, 150-200 days after booster-vaccination. Hybrid immunity, defined as vaccination and documented prior infection, was associated with durable and higher or comparable (by number of antigen exposures) protection against transmission. CONCLUSIONS: While we observed VOC-specific immune-escape, especially by Omicron, and waning over time since immunization, vaccination remained associated with a reduced risk of SARS-CoV-2-transmission.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Bayes Theorem , Belgium/epidemiology , Contact Tracing , Vaccine Efficacy , Immunization, Secondary
6.
Viruses ; 14(4)2022 04 13.
Article in English | MEDLINE | ID: mdl-35458532

ABSTRACT

The objective of this study was to investigate the incidence and risk factors associated with COVID-19 vaccine breakthrough infections. We included all persons ≥18 years that had been fully vaccinated against COVID-19 for ≥14 days, between 1 February 2021 and 5 December 2021, in Belgium. The incidence of breakthrough infections (laboratory confirmed SARS-CoV-2-infections) was determined. Factors associated with breakthrough infections were analyzed using COX proportional hazard models. Among 8,062,600 fully vaccinated adults, we identified 373,070 breakthrough infections with an incidence of 11.2 (95%CI 11.2-11.3)/100 person years. Vaccination with Ad26.COV2.S (HR1.54, 95%CI 1.52-1.56) or ChAdOx1 (HR1.68, 95%CI 1.66-1.69) was associated with a higher risk of a breakthrough infection compared to BNT162b2, while mRNA-1273 was associated with a lower risk (HR0.68, 95%CI 0.67-0.69). A prior COVID-19-infection was protective against a breakthrough infection (HR0.23, 95%CI 0.23-0.24), as was an mRNA booster (HR0.44, 95%CI 0.43-0.45). During a breakthrough infection, those who had a prior COVID-19 infection were less likely to have COVID-19 symptoms of almost all types than naïve persons. We identified risk factors associated with breakthrough infections, such as vaccination with adenoviral-vector vaccines, which could help inform future decisions on booster vaccination strategies. A prior COVID-19 infection lowered the risk of breakthrough infections and of having symptoms, highlighting the protective effect of hybrid immunity.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Adult , BNT162 Vaccine , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Incidence , Prospective Studies , Risk Factors , SARS-CoV-2/genetics
7.
Vaccine ; 40(22): 3027-3037, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35459558

ABSTRACT

BACKGROUND: During the first half of 2021, we observed high vaccine effectiveness (VE) against SARS-CoV2-infection. The replacement of the alpha-'variant of concern' (VOC) by the delta-VOC and uncertainty about the time course of immunity called for a re-assessment. METHODS: We estimated VE against transmission of infection (VET) from Belgian contact tracing data for high-risk exposure contacts between 26/01/2021 and 14/12/2021 by susceptibility (VEs) and infectiousness of breakthrough cases (VEi) for a complete schedule of Ad26.COV2.S, ChAdOx1, BNT162b2, mRNA-1273 as well as infection-acquired and hybrid immunity. We used a multilevel Bayesian model and adjusted for personal characteristics (age, sex, household), background exposure, calendar week, VOC and time since immunity conferring-event. FINDINGS: VET-estimates were higher for mRNA-vaccines, over 90%, compared to viral vector vaccines: 66% and 80% for Ad26COV2.S and ChAdOx1 respectively (Alpha, 0-50 days after vaccination). Delta was associated with a 40% increase in odds of transmission and a decrease of VEs (72-64%) and especially of VEi (71-46% for BNT162b2). Infection-acquired and hybrid immunity were less affected by Delta. Waning further reduced VET-estimates: from 81% to 63% for BNT162b2 (Delta, 150-200 days after vaccination). We observed lower initial VEi in the age group 65-84 years (32% vs 46% in the age group 45-64 years for BNT162b2) and faster waning. Hybrid immunity waned slower than vaccine-induced immunity. INTERPRETATION: VEi and VEs-estimates, while remaining significant, were reduced by Delta and waned over time. We observed faster waning in the oldest age group. We should seek to improve vaccine-induced protection in older persons and those vaccinated with viral-vector vaccines.


Subject(s)
COVID-19 , Vaccines , Ad26COVS1 , Aged , Aged, 80 and over , BNT162 Vaccine , Bayes Theorem , Belgium/epidemiology , COVID-19/prevention & control , Contact Tracing , Humans , Middle Aged , RNA, Viral , SARS-CoV-2 , Vaccination , Vaccine Efficacy
SELECTION OF CITATIONS
SEARCH DETAIL
...